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��������	 In this paper, a nonlinear system identification framework using parallel linear-plus-neural 

networks model is developed. The framework is established by combining a linear Laguerre filter 

model and a nonlinear neural networks (NN) model in a parallel structure.  The main advantage of the 

proposed parallel model is that by having a linear model as the backbone of the overall structure, 

reasonable models will always be obtained. In addition, such structure provides great potential for 

further study on extrapolation benefits and control. Similar performance of proposed method with 

other conventional nonlinear models has been observed and reported, indicating the effectiveness of 

the proposed model in identifying nonlinear systems.  
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Nonlinear system identification has been the subject of intense research in recent years [1]. In general, 

the prediction of the output at time t of a dynamical system can be represented as [1]: 

 

),()(ˆ 1 θθ −= tZgty                                                                                                                         (1) 

where { }�),2(),2(),1(),1(1 −−−−=− tutytutyZ t  is the vector of all or some previously 

measured inputs and outputs, and in cases where the system is not fully known, the prediction will be 

parameterized by the parameters θ . A nonlinear dynamic model is when )(ˆ θty  is nonlinear in Z  

and nonlinear/linear in θ . 

In the control community, one of the important issues for dynamic systems is the selection of the 

useful parameterizations of )(ˆ θty  for nonlinear models [1]. Due to the fact that in nonlinear process 

modeling there exists no universal procedure for representing a nonlinear process, a vast amount of 

modeling approaches have been investigated [2, 3]. In essence, there are two standard approaches for 

building mathematical models: the traditional fundamental modeling (white box) and the purely 

empirical modeling (black box) [1, 4]. Grey box or hybrid model is the term used when these two 

approaches are combined. 

Over the years numerous nonlinear empirical models have been developed, and they can generally 

be classified into two major categories: (1) single structure-based empirical models, and (2) 

linear-and-nonlinear-based empirical models. Many of the widely known modeling techniques fall 

under the single structure-based models category, which include Volterra models,  artificial neural 

networks, fuzzy-logic based models, and Nonlinear Auto Regressive with eXternal input (NARX) 

models. Some combinations of them like neuro-fuzzy models, support vector machine and kernel 

methods of modeling, and wavelet decomposition based models are also reported. On the other hand, 

linear-and-nonlinear-based empirical models may be classified into series and parallel forms. The 

most popular type of the series form is the block-oriented (BO) models, for example,  Hammerstein 

and Wiener models [5-12].  

In nonlinear system identification using black box models such as neural networks, one possible 

approach is to use a parallel combination of linear-plus-neural networks models. The residuals from a 

linear model may be used to develop a neural networks model to pick up the nonlinearities [13]. This 
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parallel structure ensures that reasonable models are always obtained and the overall model performs 

at least as good as or better than the linear model [14]. An interesting approach is the two-point 

gain-scheduling method using a static neural network model and a quadratic difference equation [15]. 

Another approach is the use of integrated linear partial least-squares (PLS) and nonlinear static 

feed-forward neural network in parallel in a structure known as extended Wiener model [16]. 

However, methods used involved complex procedures. An integrated linear state space model with 

neural networks model structure has also been reported for the identification and control of a 

one-degree-of-freedom vibration system [17], however, the model is only applicable for mild 

nonlinear systems.  In this paper, a simpler approach is proposed with the development of a nonlinear 

model is proposed using the integration of parallel linear Laguerre filters model and neural networks 

(NN) model. 

�����������������������
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Consider a general nonlinear output error (NOE) model structure expressed as 

 

)())(ˆ , ),1(ˆ),( ..., ),1(()( kemkykymkukufky +−−−−= �                                                   (2)  

 

where e(k) refers to the system white noise. A general linear model structure, on the other hand, may 

be represented as 

 

 )()()()( kekuqGky +=                                                                                                                 (3) 

 

Without loss of generality (2) and (3) can be combined to get 

)())(ˆ,),1(ˆ),( ..., ),1(()()()( kemkykymkukufkuqGky rr +−−−−+= �                                   (4) 

 

where rŷ  refers to the predicted residuals of the linear model, i.e. 
linearmeasuredr yyy ˆˆ −= . Equation (4) 

represents a parallel structure in which a linear model is combined with a non-linear model 

represented by f (·). For a single-input single-output system with a Multi-Layer Perceptron (MLP) 

neural network with one hidden layer in parallel with a linear Laguerre filter model, the one-step 

ahead prediction model from (4) becomes 
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where the nonlinear neural network function approximation is trained with regression vectors 

consisting of previous plant inputs and previous residuals of the linear model, 

)](,),1(),(,),1([)( mkykymkukukx rr −−−−= �� . Also RR →:,βϕ  are the nonlinear 

activation functions (in this research work, hyperbolic tangent activation function is used for the 

hidden layer), b are the biases, K is the number of hidden neurons, and the weights of the network are 

denoted by Kiw ji ,,1,1

, �=  (with i
th

 neuron and j
th

 input, in this case 1=j ) for the first layer, and 

Kiwi ,,1,2
�=  for the second layer. 

�����������
����������������������	 The sequential identification structure proposed for the parallel 

Laguerre-NN models is illustrated in Figure 1.  The linear Laguerre model is identified first, and the 

nonlinear NN model is then trained with the predicted residuals. The pseudo-independent nature of 

this parallel structure allows both the models to capture the essential characteristics of the underlying 

process separately and hence more accurately. 
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Fig. 1. The proposed sequential identification of residuals-based parallel Laguerre-NN models (I: 

simulation configuration, II: prediction configuration) 

 

Given a set of nonlinear data to be identified [u(k), ym(k)], the simple algorithm to identify the 

Laguerre-NN model can be described as follows: 

������������

1.� Develop a parsimonious Laguerre model using methods described by [18] to get y1. 

2.� Calculate the predicted residuals using 1
ˆ yyy mr −= . 

3.� Develop the MLP network model using standard algorithm with 

)](ˆ,),1(ˆ),(,),1([)( mkykymkukukx rr −−−−= ��  as inputs and ŷr(k) as outputs of the NN 

model. 
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����������	 The system considered is a simple single-input single-output (SISO) 

nonlinear plant frequently referred to in literature for nonlinear systems analysis and control [19], 

with process input, u, and process output, y. The model is given by: 

 

)1(2.1)))2()1((5.0cos(3.0
)2()1(1

)2()1(5.2
)(

22
−+−+−+

−+−+

−−
= kukyky

kyky

kyky
ky                           (6) 

 

A slight modification is introduced to induce a higher nonlinear behaviour, where cosine function 

is imposed on the process input term as shown in (7): 

 

))1(2.1cos()))2()1((5.0cos(3.0
)2()1(1

)2()1(5.2
)(

22
−+−+−+

−+−+

−−
= kukyky

kyky

kyky
ky                      (7) 

 

This nonlinear plant has a pre-specified sampling time which is 1 time unit. For this case study, a 

sinusoidal input signal is used to generate the identification data. The sinusoidal signal is generated 

using the ‘sine’ block in SIMULINK, with amplitude of 1.0 and frequency of 0.025 sampled at 1.0 

time unit for 500 data points. 
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������������	 The input-output data for the identification of this case study is given in Figure 3.  
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Fig.3. Input-output data set 

 

The Laguerre model for the Laguerre-NN is developed with 6 Laguerre filters. The estimated pole 

and Laguerre parameters are   

 

9656.0ˆ =p  
cOBF-NN = [0.0641 -2.5678 0.6077 0.7902 -0.5826 1.1567] 
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(a)�Measured and estimated output for linear Laguerre model (validation data) 
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(b) Measured and predicted output for the overall Laguerre-NN model (validation data) 

Fig.4. Laguerre-NN model performance on validation data set 

 

Figure 4(a) shows the corresponding linear Laguerre model performance on the validation data set 

for this plant. It is clear that the plant considered is highly nonlinear, as the percentage of fit of the 

linear OBF model is well below 0%. Once the linear Laguerre model has been developed and the 

residuals have been calculated, 1
ˆ yyy mr −= , the residuals MLP networks are then trained. 

Hyperbolic tangent activation function (represented as ‘tansig’) is selected for the hidden layer, and 

the output layer is set at linear. The resulting residuals network configurations may be represented as 

follows: 

 

resNN: [4-4-1 neurons with tansig-tansig-linear transfer functions] 

 

The overall Laguerre-NN model performance is shown in Figure 4(b). Comparing Figures 4(a) and 

(b), significant improvement can be seen in the overall Laguerre-NN identified model. The 

Laguerre-NN model is able to track the true output behavior as shown in Figure 4(b). For comparison 

analysis, models based on conventional MLP (NN) and series Wiener-MLP are used. The identified 

conventional NN model has 4 neurons in its hidden layer with the following configuration:  

 

NN(plant1): [4-4-1 neurons with tansig-tansig-linear transfer functions] 

 

The resulting linear Laguerre subsystem for the Wiener-MLP model with 6 Laguerre filters has the 

following estimated pole and Laguerre parameters 

9733.0ˆ =p  
cWiener-MLP(plant1) = [0.5618 3.6426 -6.2570 3.2004 -2.7261] 

 

The corresponding nonlinear MLP NN subsystem has 22 hidden neurons in its hidden layer with 

the following optimal configuration: 

 

seriesNN(plant1): [4-22-1 neurons with tansig-tansig-linear transfer functions] 

 

The performance comparisons are done on the validation data set. Figure 5 provides the output 

comparisons for the Laguerre-NN, conventional NN, and the series Wiener-MLP models. It is 

observed that the performances of all three models are fairly similar with each other, indicating the 
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capability of the proposed Laguerre-NN model in achieving almost comparable accuracy in 

identifying the nonlinear system as the conventional NN and Wiener-MLP models. In addition, this 

algorithm requires only one type of input design sequence for the identification of both linear OBF 

and the MLP network. Identification of each model also requires the usage of well-established 

methods without suffering from any other added complexity. Besides these advantages, the parallel 

structure also has great potential for extrapolation since in the worst scenario linear extrapolation 

behaviour can be expected. 
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Fig. 5. Output comparison (validation data) 
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In this paper, parallel Laguerre-NN model has been developed and tested for the identification of a 

nonlinear plant system. The results indicate the capability of the proposed Laguerre-NN model in 

identifying the nonlinear system and providing comparable performance with other conventional 

methods. This is promising as the parallel structure has great potential for further study on 

extrapolation benefits and control. 
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