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Abstract- Infiltration and surface runoff are two main 

phenomena taking place as rainwater reaches soil slopes during 

rainfall events. Runoff occurs whenever the rainfall intensity 

becomes greater than the infiltration rate of the soil slope. In 

rainfall triggered landslides, a detailed account of infiltration and 

surface runoff is of paramount importance as it is the build-up of 

pore-water pressure, due to rainwater infiltration, that usually 

causes soil slope instability. While negative pore-water pressure 

adds to the stability of soil slopes, occurrence of positive pore-

water pressures disrupts the existing stability – the condition that 

mostly leads to failure of a standing soil slope during or 

immediately after heavy or prolonged rainfall events, especially, 

in tropical and subtropical regions. In this paper, the application 

of smoothed particle hydrodynamics (SPH) – a meshfree 

numerical method - to triggering surface runoff along a saturated 

soil slope was investigated in view of predicting fast moving 

landslides, such as debris flows and avalanche. The governing 

equation used in the current research was that of the fundamental 

Navier-Stokes (NS) equation. SPH codes in FORTRAN language 

were developed to run the simulation. Snapshots of the simulation 

are presented. The snapshots demonstrate that the SPH scheme is 

able to capture important aspects of the surface runoff 

phenomenon. 
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I. INTRODUCTION 

During rainfall events, part of the rainwater reaching the 

earth’s surface enters the soil as infiltration while the other part 

flows down the slope as surface runoff (i.e. neglecting 

interception, evaporation, and other losses). The amount of 

rainwater that goes as infiltration and runoff depends on the 

infiltration rate of the soil. Water entering the soil disturbs the 

existing moisture equilibrium in the soil. As such, on the basis 

of water content, soil can be said to be saturated when all the 

soil void spaces are filled with water, while a soil with void 

spaces partially filled with water is referred to as 

unsaturated/partially saturated soil.  Analysis of in-soil water 

movement plays a significant role in geotechnical hazards 

investigation. Fast moving landslides (for instance, debris 

flows, avalanche, etc.) are one of the geotechnical hazards 

known to cause tremendous life and wealth losses all over the 

world. Though, in most cases, principles of saturated soil 

mechanics are used in soil slope stability analysis, in practice, 

there are myriad evidences that most landslides occur while the 

soil is still in unsaturated condition. The main difference 

between saturated and unsaturated soils lies in the manner in 

which we treat the hydraulic conductivity of the soil. In dealing 

with saturated soils, soil’s hydraulic conductivity is usually 

assumed to be constant. In modeling water flow through 

unsaturated soils, however, the hydraulic conductivity is 

assumed to vary in accordance with the soil water content or 

matric suction.  

Owing to the grave consequences of landslides, both in 

terms of loss of life and wealth, conducting landslide numerical 

modeling and simulation is of paramount importance. 

Landslide predictions are usually made in terms of time and 

depth of failure so that residents residing nearby could get time 

to escape.  

Conventionally, mesh-based numerical techniques, such as 

finite difference (FD) and finite element (FE), have been used 

in most geotechnical investigations of civil engineering works. 

However, these numerical methods (i.e. FD and FE) have 

inherent difficulties for using, especially, in areas where large 

deformations are expected, because of mesh-distortion in case 

of FE method and because of inefficient use of regular grids for 

irregular geometries in the case of FD method. In the current 

research, the goal is, therefore, to explore the applicability of 

the smoothed particle hydrodynamics (SPH) – one of the 

meshfree (also referred to as meshless) methods – to triggering 

surface runoff down a saturated soil slope. The numerical 

technique smoothed particle hydrodynamics (SPH) was, 

originally invented for simulating astrophysical phenomena, 

and, later, its applications to several fields of science and 

engineering have been reported in the literature. In terms of 

paper organization, brief background information on SPH 

formulation is presented first followed by numerical examples 

and concluding remarks. 

II. METHODOLOGY: SMOOTHED PARTICLE HYDRODYNAMICS 

Smoothed particle hydrodynamics (SPH) is a macroscopic 

numerical approach initially invented for simulating 

astrophysical phenomena in 1977 by Lucy, and by Gingold and 

Monaghan ( as reported in [1]) and, later, it was applied to  

different areas of research, including free surface flows, flow 

thorough porous media, etc. SPH meshless numerical method 

formulation is based on interpolation theory, and two essential 

concepts dictate its formulation: (i) kernel approximation (ii) 

particle approximation. 



A. Kernel Approximation 

Kernel approximation consists in approximating the values 

of both the field function and the derivative of the field 

function. Kernel approximation of field functions is, in 

essence, the representation of the field function(s) in integral 

form. This is achieved by multiplying an arbitrary field 

functions with a smoothing kernel function. Therefore, a 

function A of a three-dimensional position vector x (or an 

estimate of the function A(x) at location x’) can be expressed in 

integral form 

∫
Ω
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where, )'( xx −δ is the Dirac delta function, given by 
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where, Ω  is the volume of the integral containing x; 'x is a 

new independent variable. 

In the above expression, the function A(x) is exact or 

rigorous, so long as the Dirac delta function is used and A(x) is 

continuous in Ω . In SPH, however, the Dirac delta function 

needs to be replaced by the smoothing (weighting) function 

),'( hxxW −  in which case it will become an approximate 

representation of A(x). The SPH form of a function 

approximation (or kernel approximation) is, therefore 

∫
Ω
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where, W is called the kernel or smoothing function; h is the 

smoothing length, and demarcates the influence area of the 

smoothing function. It needs to be noted, however, that (3) 

gives an approximate representation of the integral of a field 

function as long as W is not a Dirac delta function; and, hence, 

the name kernel approximation. 

Kernel approximation of derivative of a function, on the 

other hand, refers essentially to approximating the values of the 

gradient and the divergence of the field function. As equations 

of computational fluid dynamics problems are mostly PDEs of 

second degree [1], an appropriate approximation of the 

function derivatives is of profound importance. Accordingly, in 

SPH method, such approximations are usually performed by 

simply replacing the function A(x) in (3) by �����, for 

gradient and, �. A�x� for the divergence. More specifically, the 

kernel approximation of the divergence of the field function 

A(x) (for vector quantity) is 

∫
Ω
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After applying the divergence theorem, it is always the case 

that the divergence operation on the primed coordinate in (4) is 

transferred to the gradient of the smoothing function in SPH 

numerical approach, which entails re-writing (4) as 

∫
Ω
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Note that a dot product is used in (5). Similarly, the gradient of 

the function (for scalar quantity) is expressed as 

∫
Ω
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It can be said, therefore, that the spatial derivative of a field 

function can be evaluated from the values of the field function 

and the spatial derivative of the smoothing function. It should 

also be noted that the negative sign outside the integral sign in 

(5) and (6) can be removed if the spatial derivative of the 

kernel function is taken with respect to x instead of the primed 

x (i.e., 'x ). 

B.  Particle Approximation 

Similarly, particle approximation consists in approximating 

the field function and its spatial derivatives (gradient and 

divergence). Particle approximation is another key operation in 

SPH numerical formulation; and is the means of transforming 

the continuous kernel approximation (in integral form) into the 

summation over all particles at the discrete points in the 

support domain. Particles carry mass, m, velocity, v, and other 

quantities specific to the given problem; and, are regarded as 

interpolation points, analogous to the grid nodes in mesh-based 

numerical methods. Therefore, equations that govern the 

evolution of fluid quantities are expressed as summation 

interpolants with the help of smoothing function. Equation (3) 

can, then, be approximated in a summation form as 
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where N  is the total number of particles in the support domain; 

mj and ρj are the mass and density of particle j, respectively. 

And also, it should be noted that the infinitesimal volume dx’ 

is replaced by the finite volume jjmV ρ=∆ . 

From (7), it is possible to infer that the approximate value of 

a function at any discrete point can be obtained using the 

weighted average of those values of the function at all other 

particles in the influence domain of that particle. Following 

similar argument, the particle approximation for a function at 

particle (point) i may be written as in (8) [1], [2] 
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On the other hand, particle approximation of the gradient 

and divergence of a given field function can be formulated 

following similar fashion. Transformation of the PDEs to the 

SPH discretized summation form, for instance, can be achieved 

by different ways. One way is with the help of integration by 

parts and Taylor series expansion. Suppose A is a scalar field 

function representing any physical variable and is defined in a 



given domain of interest. Its gradient can be formulated in a 

similar manner to (8) as 
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where, ( )hxxWW jiij ,−=   

Applying some basics of vector calculus, other forms of the 

gradient equations can also be formulated. For instance, putting 

ρ inside the gradient operator and applying the chain rule, (9c) 

can be obtained. The introduction of mass and density into 

SPH particle approximation is to facilitate numerical 

approaches in hydrodynamic problems where density is a key 

parameter [1]. 
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And, re-writing in SPH particle approximation form 
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Again inserting (
ρ
1

) in the gradient operator and applying 

the chain rule 
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Note that the negative sign in (5) has been dropped in the 

above equations, because, here, the spatial derivative of the 

smoothing function W∇ is taken with respect to particle i, and 

not to particle j. 

C. Smoothing Functions 

In the preceding sections, it was indicated that SPH 

numerical method employs the theory of interpolation as its 

foundation. Smoothing (also, called weighting) function is, 

therefore, at the core of the SPH formulation. Spatial 

discretization of field variables is based on a set of points 

(particles, in SPH nomenclature), instead of grid nodes, which 

are commonly used in mesh-based numerical methods, such as 

FD and FE methods. It is, thus, with the use of kernel 

interpolation that field variables, such as velocity, pressure, 

density, stress, etc., are approximated at any point (i.e., at any 

discrete point) in the support domain. Accordingly, several 

kernel functions are being used in SPH numerical method. The 

use of the piecewise cubic-spline function, commonly known 

as the B-spline, suggested by Monaghan and Lattanzio (as cited 

in [1]), is popular among SPH numerical modelers. In the 

current work, however, a more or less similar cubic spline 

function, effectively applied to different modes of 

hydrodynamic conditions by SPHyscis code developers [3] is 

chosen. The same function (with slight variation in equality 

signs) was used in adaptive smoothed particle hydrodynamics 

(ASPH) in [1]. 
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where, 
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particles. And, αd is given by
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dimensions, respectively.  

The glaring shortcoming of spline functions is that their 

second derivative is a piecewise linear function, and, therefore, 

the stability properties can be inferior to those of smoother 

kernels [1]. This could, probably, be one of the reasons why 

the spatial first derivative of the cubic spline smoothing 

functions is widely used in the emerging literature instead of 

the second derivative. The spatial first derivative of W(q) for a 

two-dimensional case, thus, is given by 
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III. APPLICATIONS: RUNOFF MODELING AND SIMULATION 

A. Governing Equation 

At microscopic scale, the Navier-Stokes equation 

(sometimes also referred to as continuity and momentum 

equations) was employed for modeling free surface flows [4]. 

The Navier-Stokes (NS) equation was also widely used to 

model flow through porous media by several researchers, for 

instance, Jiang and Sousa [5], Morris et al. [6], Pereira et al. 

[7], and Lenaerts et al. [8]. The current study, also, seeks to 



model surface runoff down a saturated soil slope by solving the 

same NS equation, which is given in Lagrangian form  

0
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where, V  is the velocity vector, P  is the pressure, ρ  is fluid 

density, g  is gravitational acceleration, υ  is fluid dynamic 

viscosity, f  is other external forces vector, and t is time. 

It is worth noting that SPH was originally invented for 

modeling flows of compressible fluids, and, thus its application 

to incompressible fluid flows needs some treatment to ensure 

density variation within a certain limit is maintained. In order 

to circumvent the difficulty of solving the pressure term for 

incompressible fluids, previous research works have resorted to 

using equation of state (EoS) as described in the next section. 

B. Equation of State 

For the standard SPH for compressible fluids, particle 

motion is triggered by pressure gradient, which is normally 

calculated using equation of state. However, for the case of 

incompressible fluids, applying and solving the pressure using 

an incompressible fluid EoS dictates the adoption of small 

timestep [1]. This constraint has led to the adoption of artificial 

compressibility for solving the pressure gradient in the 

governing equation, the approach which is dubbed quasi-

incompressibility by some researchers. Accordingly, 

Monaghan [4] modified the EoS suggested for water by 

Batchelor (also cited in [4]), for describing sound waves and 

used it for simulating free surface flows, and the same equation 

has been frequently used by several emerging literatures. In 

this research too the same EoS is used as given in (16). 

Moreover, Bui et al. [9] applied the same EoS in their 

formulation of SPH for soil mechanics with successes. 
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where, γ  is constant and is taken to be a unity for 

incompressible low Reynolds number fluid flows [10], and 7 

for other circumstances [4], ρo is the reference density, B  is a 

problem dependent parameter for limiting the maximum 

density gradient and, in most cases, can be taken as the initial 

pressure [1], [10]. This paper assumes γ = 1.0 

C. Boundary Treatment 

Boundary treatment entails special consideration in SPH, as 

particle deficiency near or on the boundary impairs full 

exploitation of the scheme. Monaghan [4], also reported in [1], 

suggested the use of ghost particles near or on the boundaries 

so that high repulsive force is created to prevent fluid particles 

from unphysically penetrating a solid boundary. Such penalty 

force approach to prevent interior fluid particles from 

penetrating the boundary is based on the Lennard-Jones 

molecular force approach. Another approach, in which the 

Hertzian contact theory was used, was also developed by Bui et 

al. [9]. For the current research we intend to use the 

Monaghan’s approach [4] as given in (14). 
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where, as in [1], a and b are taken to be 12 and 4, respectively, 

although Monaghan [4] proposed 4 and 2, respectively, with 

the conditions that a > b, always. He also suggested that a and 

b could also be taken as 12 and 6, respectively, without 

significant changes in the results. D is a problem dependent 

parameter and is usually taken to be the square of the largest 

velocity [1], and ro is selected to be approximately equal to the 

initial particle spacing. 

D. Time Integration 

There are two major types of numerical integration 

algorithms - explicit methods and implicit methods. The 

explicit methods have several advantages, including ease of 

programming, little memory use and less computation. Their 

major limitation is that they are unstable for large timesteps. 

Implicit methods, on the other hand, can use a larger timestep 

and are very stable. In using the predictor-corrector method 

attempt is made to combine the best aspects of the two 

methods. The predictor-corrector algorithm consists of a 

predictor step and a corrector step in each interval. The 

predictor step predicts a new value, and the corrector step 

improves the accuracy of that value. The predictor step is 

undertaken only once while the corrector step is continued until 

the required level of accuracy is reached. There are several 

predictor-corrector methods though for the current paper we 

stick to the Euler predictor-corrector method (some prefer to 

call it modified Euler method). The procedure in applying the 

Euler predictor-corrector method is given as follows. 
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For the sake of stability, the timestep, ∆t, needs to be 

checked against several stability requirements. Detailed 

reading regarding these stability conditions can be made in [1], 

[10]. 

IV. NUMERICAL EXAMPLES AND DISCUSSIONS 

A numerical example of triggering surface runoff along a 

soil slope is given in the figures below (see Fig. 1.). The 

numerical formulation was developed based on the concept 

adopted in simulating free surface flows as in [3] and [4]. In 

the examples, boundary particles were generated to form 

geometric boundaries for the computation. All the boundaries 

(left, top, right, and bottom) were rendered impenetrable to the 

moving water particles. 



 

 

  

 

     

Fig. 1.  Runoff simulation snapshots 

In the above figures, the blue color represents the moving 

water particles, whereas, the red represents the impenetrable 

soil particles, which, in turn, represent geometric boundaries of 

the slope under investigation. Fig. 1(a) depicts the initial 

conditions in which rainwater of 480 mm depth was placed on 

the crest of the slope. Initial water particles were placed only 

on the crest of the slope purely in the interest of simplicity. 

Figs. 1(b) to 1(e) represent runoff simulation at successive 

timesteps for a simulation time of 0.5 seconds. SPH codes were 

developed in FORTRAN language for the simulation. The 

figures are self-explanatory in that water particles moving 

down a soil slope are depicted representing surface runoff. 

Calculation of flow parameters, such as flow velocities, 

pressures, and others were also undertaken as part of the 

overall investigation though not presented in the current paper.    

V. CONCLUDING REMARKS 

In this paper, it is highlighted that the Navier-Stokes 

equation can be effectively used to simulate surface runoff 

along a soil slope. Important flow parameters, such as flow 

velocity and pressure can be easily calculated considering each 

particle in the computational domain. The boundaries can be 

made either penetrable (as in the case of porous media) or 

impenetrable (as in the case of hard stratum\rock). As such, in 

the current research, the top of the soil slope was rendered 

impenetrable to water particles so that rainwater infiltration 

could be prevented. Experimental verification of the results is 

ongoing.  
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Initial particle configuration 


