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ABSTRACT 

 

There are several methods to predict permeability from thin sections. Conducting 

numerical simulation of laboratory experiments through 3D pore structure generated 

from thin section image is one of the methods. To implement this method on a 

standard personal computer and in real time, the size of the generated 3D should be 

limited to mm scale. This size is an order of magnitude smaller than the physical core 

plug. Computed permeability from this size may be over or underestimated when 

compared with the true laboratory measurement which is conducted at cm scale. The 

aim of this study is to develop a robust workflow to estimate permeability of reservoir 

rocks at core plug scale (cm scale) using full thin section images of sandstone which 

can be implemented in real time on a standard personal computer. The workflow is 

based on a combination of fluid flow simulation through 3D porous media generated 

from 2D images at mm scale and grain size vertical profile trends of entire image area 

of the thin section which covers an area in cm scale. For validation purposes the 2D to 

3D porous media methods were tested on 2D images selected from 3D CT-Scan 

image. The results showed that this methodology had good agreement with the CT-

scan data. The workflow was then applied on thin sections of the Berea core plug and 

three wells in the Malay Basin where their porosity and permeability were tested in 

the laboratory. The grain size vertical profile trends which cover the entire area of thin 

sections were used to define the heterogeneity of full thin section images at cm scale. 

The building blocks for upscaling purposes were created based on these trends. The 

representative image from each block was selected and the 2D to 3D porous media 

method was applied. From this information permeability at mm scale from each block 

was estimated and then upscaled from pore to core plug scale. The upscaling results 

on each thin section matched well with laboratory data.  
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ABSTRAK 

 

Terdapat beberapa kaedah untuk meramalkan kebolehtelapan daripada keratan nipis. 

Menjalankan penyelakuan berangka eksperimen makmal melalui struktur liang 3D 

yang dijana daripada imej keratan nipis adalah salah satu kaedah. Untuk 

melaksanakan kaedah ini pada komputer peribadi standard dan dalam masa nyata, saiz 

3D yang dijana harus terhad kepada skala mm. Saiz ini adalah suatu perintah 

magnitud yang lebih kecil daripada palam teras fizikal. Kebolehtelapan dikira dari 

saiz ini mungkin atau diperkecilkan jika dibandingkan dengan pengukuran makmal 

sebenar yang dijalankan pada skala cm. Tujuan kajian ini adalah untuk 

membangunkan satu aliran kerja yang mantap untuk menganggarkan kebolehtelapan 

batuan takungan pada skala plag utama (skala cm) menggunakan imej seksyen penuh 

nipis batu pasir yang boleh dilaksanakan secara real time di komputer peribadi piawai. 

Aliran kerja adalah berdasarkan gabungan simulasi aliran bendalir melalui media 

berliang 3D yang dijana daripada imej 2D pada skala mm dan saiz bijian trend profil 

menegak keseluruhan kawasan imej seksyen nipis yang meliputi kawasan dalam skala 

cm. Untuk tujuan pengesahan 2D kepada media berliang 3D kaedah telah diuji pada 

imej-imej 2D yang dipilih daripada imej 3D CT-Scan. Hasil kajian menunjukkan 

bahawa kaedah ini mempunyai perjanjian yang baik dengan data CT-scan. Aliran 

kerja itu kemudiannya digunakan pada bahagian nipis plag teras Berea dan tiga telaga 

di Lembangan Melayu di mana keliangan dan kebolehtelapan mereka telah diuji di 

makmal. Saiz butiran trend profil menegak yang merangkumi seluruh kawasan 

seksyen nipis digunakan untuk mentakrifkan keheterogenan imej seksyen penuh nipis 

pada skala cm. Blok-blok bangunan untuk tujuan Penskalaan telah dicipta 

berdasarkan trend ini. Imej wakil daripada setiap blok telah dipilih dan 2D kepada 

kaedah media berliang 3D telah digunakan.  
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CHAPTER 1 : INTRODUCTION 

INTRODUCTION 

 

 

1.1 Introduction 

Porosity and permeability are the most important physical properties for reservoir 

characterization. As opposed to porosity which can be obtained insitu from seismic 

studies, well testing and logging, spatial distribution of permeability cannot be 

directly obtained insitu. Currently, up to now, collecting physical core plugs along 

selected depths of petroleum wells and measuring the permeability of the core plugs 

in the laboratory is the most reliable way to obtain spatial distribution of permeability 

[1] [2].  

Conducting measurements in a laboratory requires time and resources. Another 

limitation is that, due to the economics of business, most of the wells (almost 90%) 

are not cored. Even if the wells are cored, core plug measurements are not carried out 

along the entire depth of the wells and sometimes leave behind gaps between the 

measurements. Upscaling is usually carried out to obtain the effective physical 

properties of the rock formations. 

As opposed to core plugs, samples like chips, cuttings and rotary sidewall cores 

could be sampled along the entire depth of each well [3]. The spacing of sampling for 

rotary sidewall core covers almost the entire depth of the wells. However, these 

samples are not easy to be measured as the equipment for measuring need a regularly 

shaped sample as an input for measurement. Most of these samples were used to make 
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thin sections for geological evaluation and mineralogy studies [4] [5] and to be stored 

as sample database. 

To be able to extract physical properties such as permeability from chips and 

cuttings has been a dream of geoscientist. Several studies have revealed that 

conducting rigorous numerical simulation of physical experiments in a realistic 

porous media can be used to overcome these problems. This technology can be used 

as a compliment for laboratory data [6] [7] [8]. Such porous media can be obtained 

from high-resolution X-ray tomography, also known as Computed Tomography (CT)-

scanning. CT-scan produces multiple closely spaced 2D slice images of a rock that, 

when stacked together, represent the 3D volume [9] [10]. The absolute permeability 

can be accurately calculated by applying Darcy’s law numerical simulation through 

3D volume such as Pore Network Modeling (PNM) and Lattice-Boltzmann method 

(LBM) [11] [12]. However, high-resolution scanning devices are still prohibitively 

expensive and the scanning time is too long to be practically useful in massive 

numerical experimentation [9]. Another problem is that the numerical simulation on a 

large digital sample (i.e. core plug scale) needs a supercomputer or parallel computing 

of a good workstation to run the simulation [9].  

An alternative to reconstruct 3D volume from thin section (2D image) has been 

discussed by several researchers [13] [14] [15] [16] [17] [18]. The information from a 

thin section image where the pore space appears in a blue color because it is 

impregnated with blue dyed epoxy and easily distinguishable from the grains can be 

used for this purpose. Another reason is that thin sections are relatively easy and 

cheap to prepare either from core plugs, side wall core plugs or cuttings are often 

made at the drill site. Thin sections are also stored in a database storage for geological 

evaluation. Employing geostatistical simulation to reconstruct 3D porous media from 

2D image can still be used to correctly simulate connectivity in clastic sediments and 

the computed permeability through this methodology matched laboratory data [9] 

[17].  
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1.2 Problem Statement 

Even though many researchers have conducted researches on the reconstruction of 2D 

to 3D porous media using geostatistical simulation, the accuracy and time of 

computation still need to be improved especially when running the simulation on a 

standard personal computer which is portable enough to be used in the field.  

Studies showed that the representativeness of the 3D porous media also needs to 

be improved since the size of the reconstructed porous media through geostatistical 

simulation is only at millimeter scale. The input samples used to measure 

permeability in the laboratory are usually conducted at core plug scale (centimeter 

scale). 

The aim of this study is to develop a new workflow to predict permeability at 

laboratory or core plug scale which can be implemented in real time on a standard 

personal computer using information from thin section images.  

1.3 Objectives  

This study focuses on the improvement of computational time to reconstruct 3D 

porous media from thin section images of clastic sediments on a personal computer. 

The effect of scale is highlighted in this study. Modification of workflow to solve 

permeability anisotropy at core plug scale and relate them to laboratory data also 

highlighted in this study. Thus the objectives of this study are: 

1. To develop workflow to reconstruct pore scale 3D porous media from thin 

section images by using sample points as conditional data. For this study, the 

geostatistical algorithm used is Sequential Indicator Simulation (SISIM). Workflow to 

reconstruct 3D porous media is developed by using sample points as new parameter. 

The purpose of workflow modification is to improve computational time to generate 

3D porous media from 2D image on standard personal computer. This method is 

applied to 2D image from available 3D CT-Scan image. The accuracy of this method 

is validated by comparing the reconstructed porous media with CT-Scan image. 
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2. To calculate permeability at pore scale level using fluid flow simulation. Once 

the 3D porous media is generated, fluid flow simulation is applied.  Lattice 

Boltzmann Method is used to calculate permeability on digital sample by applying 

physical measurement concept on the simulation. The scale of digital sample in this 

part is at pore scale level. 

3. To improve laboratory scale permeability prediction using upscaling method 

with combination of fluid flow simulation on 3D porous media generated from 2D 

image and grain size vertical trends of full thin section image. The prediction of 

permeability is conducted at laboratory scale using information from full thin section 

image. Full thin section image has the same scale with laboratory scale (cm scale). 

The reconstruction of 3D porous media and simulation of fluid flow on large digital 

sample (i.e. core plug scale) cannot be implemented in real time on standard personal 

computer. The Upscaling method combine with 2D to 3D porous media 

reconstruction and fluid flow simulation is chosen as part of workflow. The result is 

compared with laboratory data to show the accuracy of the workflow.  

1.4 Scope of study 

The scope of this study comprises the following: 

 

1. Conducting 2D to 3D porous media reconstruction on selected 2D images 

from 3D CT-Scan samples 

2. Validating the 2D to 3D porous media reconstruction method with 3D porous 

media from experimental CT-Scan 

3. Identifying the minimum representative scale range volume of CT-Scan 

samples using the representative elementary volume (REV) concept 

4. Selecting training images for 2D to 3D porous media reconstruction based on 

the average porosity of each slice within the 3D CT-Scan image 

5. Determine the heterogeneity and isotropy of the training image by calculating 

Two Point Correlations Function (TPCF) 
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6. Calculate the porosity and variogram from the training images as an input for 

2D to 3D porous media reconstruction. 

7. Increase computational time by using sample points extracted from training 

images as conditional data.  

8. Measure the physical properties of Berea core plug using poroperm. 

9. Calculate grain size vertical profile from full thin section images 

10. Create building blocks for upscaling purposes based on trends from grain size 

vertical profile 

11. Improve permeability predictions at core plug scale using the combination of 

2D to 3D porous media reconstruction methods, fluid flow simulation, grain 

size vertical profile from thin sections and upscaling methods 

1.5 Thesis Outline 

This thesis consists of five (5) chapters namely Introduction, Literature Review, 

Methodology, Results and Discussions and Conclusions and Recommendations. A 

whole range of simulation studies and experimental works have been performed to 

meet the objectives of this study. 

Chapter 1 consists of the background and problem statement of this study. The 

aim of conducting this research is described in this section. The objectives and scope 

of study are also stated in this chapter. 

Chapter 2 presents a review of literature related to this study. Reference is also 

drawn from many studies on permeability prediction method. Previous studies on 2D 

to 3D porous media reconstruction distress together with the benefits and non benefits 

of each method are also described in this chapter. 

Chapter 3 describes the workflow of research methodology in this study. The list 

of 3D image CT-Scan samples and thin sections used in this study are also presented 

with detailed steps of simulation studies conducted in this research. This section also 

highlighted the thin sections, measurement and upscaling procedure. 
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Chapter 4 is divided into three main parts which are results of preliminary study 

on size and resolution, simulation study and application of upscaling permeability 

workflow to sandstone thin section (Berea core plug and Malay basin). The first part 

shows the impact of image size and resolution for fluid flow simulation. The second 

part presents results and validation of the 2D to 3D porous media reconstruction 

method. The last part describes in detail the workflow and results of application of 

upscaling permeability pore to core plug scale. Detailed discussions on the results are 

also given.  

Chapter 5 presents the conclusions of this study based on the results, discussions 

made and recommendations for future study. 

2.  
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CHAPTER 2 : LITERATURE REVIEW 

LITERATURE REVIEW 

 

 

2.1 Introduction   

The determination of porosity and permeability in a reservoir is most important in oil 

and gas exploration. Porosity determines the amount of fluid that can be stored in 

rock, and permeability determines the potential in which fluid will flow through the 

rock. Permeability is one parameter that is difficult to describe. Unlike porosity, 

detailed distribution of permeability cannot be remotely mapped since it correlates 

poorly with the elastic properties of rocks, a parameter that is usually obtained from 

remote acquisition such as seismic and well log. 

There are several empirical methods to predict permeability. One of the more 

common methods is the Kozeny-Carman relation. This empirical method is based on 

simple cylindrical pore geometry. These models have been widely applied because 

they are easy to use and simple to understand [19] [20]. 

Currently, with the development of technology, numerical fluid flow simulation 

through porous media has been used to predict permeability. The numerical 

simulation is derived by applying Darcy’s Law Equation. The input for numerical 

simulation is a digital representation of porous media in three dimensions. These 3D 

porous media can be obtained using CT-Scan [21] [22] [23]. 
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Viable approaches have been proposed by several researchers to reconstruct the 

3D porous media from the readily available 2D images of the rock. Adler [13] used 

porosity and two-point correlation function (TPCF) which obtain from binary phase 

from 2D thin section images to reconstruct the structure of the 3D porous media using 

a truncated Gaussian random function. Oren and Bakke [18] developed a process 

which reconstructs the porous media by modeling the geological process based on the 

information extracted from 2D images. Okabe and Blunt [24] used high order 

statistics to reconstruct a structure of porous media from 2D images. A sequential 

indicator simulation (Geostatistics) was used by Keehm et.al [9] [17] to reconstruct 

the structure of the 3D porous media. 

2.2 Porosity 

Porosity can be determined as the storage capacity or the total rock volume that can 

be filled with oil, gas, water or a mixture of these fluids. The total porosity ( ) is 

defined as the fraction of bulk volume of the reservoir rock that is occupied by pore 

space. This can be expressed in mathematical form as [25]: 

 

  
      

  
 

  

  
                                                                                                                      

where   is porosity (fraction), Vb is bulk volume of the reservoir rock, Vgr is grain 

volume and Vp is pore volume. 

For example in the case of a simple cubic centred packing below (Figure 2.1 a), 

  can be calculated from L
3
 (L is the length of the cube) and    , can be calculated 

from the number of packing inside the cube times volume of the packing which is 

shown in the equation below: 

               ⁄  
(
 

 
   )                                                                                                     

if r is equal to ½         , 

               ⁄  
         

  ⁄                                                                                           



 

9 

 

where           ⁄  
 is the number of packing inside the cube and          

  ⁄   is 

volume of the packing. From this information, Equation 2.1 becomes: 

  
             ⁄  

         
  ⁄  

  
                                                                                  

The final result from this equation is equal to 1 – ( /6) = 0.4764 or 47.6 %. In the 

context of 2D image, the calculation of porosity can be defined by using stereological 

concept which was introduced by Underwood (1970). Stereological concepts show 

that in a homogenous and isotropy medium the 2D area fraction is identical to the 3D 

volume fraction of that constituent [25].  The homogeneity is related to the sizes 

which are representative of that part of the pore system (Figure 2.1 b). The rock can 

be considered to be isotropic when image features are independent of orientation. This 

consideration can be identified from 2D image using the Two Point Correlation 

Functions (TPCF) method by applying Fourier Transform [28] [29].  

 

Figure 2.1 a) Volume of simple cubic centred packing. b) Area or 2D image 

selected from simple cubic centred packing [26]. 

2.3 Permeability 

Permeability is defined as the ability of rock to allow fluids to flow through 

interconnected pores. Henry Darcy developed a fluid flow equation that is used as 

standard mathematical tools to determine permeability. This equation which is 

expressed in differential form is as follows [25]: 
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where   is the flow rate,   is the permeability of the porous rock,       is the cross 

sectional area of the tube,   is the viscosity of the fluid,   is the length or the rock 

sample and       is pressure gradient in the direction of the flow. Figure 2.2 shows 

the illustration of Darcy’s Law. 

 

 

Figure 2.2 Illustration of Darcy’s Law. 

 

Figure 2.2 illustrates Darcy’s Law on a tube. It shows the proportionally that 

exists between the fluid flow rate and the applied pressure drop in a unidirectional 

flow. The derivation of Darcy’s Law is derived based on this linear relationship. 

2.4 Kozeny-Carman Relation and Permeability Prediction 

Permeability is perhaps one of the most important yet elusive reservoir properties, 

since it correlates poorly with the elastic properties of rock. As a result, permeability 

cannot be mapped remotely. Since the permeability of rocks is difficult to measure or 

simulate, empirical relations are often used to estimate permeability through other 

pore structure parameters that can be measured more easily. The Kozeny and Carman 

Relation provides a good empirical relation between fluid permeability and other 

measurable properties of porous media. The Kozeny-Carman Relation is based on 

simple cylindrical pore geometry [27].  
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Mavko and Nur [19] [27] stated these models have been widely used because they 

are easy to use and simple to understand. However, these models are only valid for 

certain conditions, in this case, fluid-flow in rocks. Furthermore, parameters from 

these models are difficult to relate in detail to rocks in the field. 

The Kozeny-Carman Relation was applied for low porosity and low permeability 

granites by Walsh and Brace [20]. The permeability was related to several parameters 

such as porosity, geometrical factor, formation factor and specific surface area. These 

kinds of relationships provide a way of relating the permeability of a porous media to 

other rock parameters, such as porosity, specific surface area, tortuosity and grain 

size. There is however, it is not easy to measure the parameters from samples or thin 

sections. Porosity is the only parameter that is easy to measure, whilst specific surface 

area is very difficult to measure accurately from thin sections. 

Another study by Berryman [28] suggested a relationship for estimating the 

specific surface area from spatial correlation functions of thin section images. Blair et 

al. [29] combined the formulae by Walsh and Brace and Berryman. The porosity and 

the specific surface area were calculated from thin section using Berryman’s formula, 

and then permeability was estimated using the relationship by Walsh and Brace [20]. 

Estimation of the permeability using this method matched well with data from the 

laboratory. There are however, some difficulties when this method is applied on thin 

section images. The calculation of the specific surface area from images is sensitive to 

the resolution of thin section images.  

The estimation of permeability has a relatively large error when the resolution of 

thin section image changes. Though the porosity and the specific surface area may be 

estimated from thin sections, the formation factor and the geometrical factor in the 

formula are not directly measurable from thin sections. Empirical estimates or 

laboratory measurements are required for these parameters. 

Schaap [30] used the Kozeny-Carman Relation to estimate the permeability of 

soil. A Scanning Electron Microscopy (SEM) image with 50 times magnifications 

was used. The specific surface area and porosities of the SEM image was derived 

using the Berryman Formula. The results indicated that after developing the model 
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using microscopic information, only macroscopic data are necessary to predict the 

permeability of soils in a semi-physical manner with the Kozeny-Carman Relation.  

Torabi [31] modified the Kozeny-Carman Relation to estimate the permeability of 

deformation bands. Permeability was calculated based on information obtained from 

image processing. Torabi devised a means to estimate the porosity and permeability 

on a micro scale and mapped out the variations along and across deformation bands 

and similar structures. In so doing, the anisotropy of physical properties in deformed 

band was shown.  

Fauzi [32] applied combination of the Kozeny-Carman Relation and 

renormalization group to estimate the permeability anisotropy of a rock. The Specific 

surface area and local porosity was estimated from two point correlation functions 

calculated from thin section images and the permeability was estimated using the 

Kozeny-Carman Relation. The permeability estimation tended to conform to the 

laboratory measurement as the renormalization step increased. 

Dvorkin [33] revised an alternative form for the Kozeny-Carman equation from 

several rocks. These forms have an advantage over the traditional one in which the 

grain size and tortuosity parameters remain constant. Dvorkin stated that empirical 

solution cannot replace measurement but can be used to mimic some experimental 

trends which can be used as a quality control tool for physical and digital 

experimentation. 

Previous studies have indicated that applying the Kozeny-Carman Relation to 

predict permeability from thin section images might be easy to be applied. This 

empirical approach can be used as a quality control tool once all parameters are 

obtained. However, there may be some problems if the image resolution is changing. 

The changes of resolution give large errors on the determination of permeability. 

Some of parameters also need to be obtained from measurement, which means this 

method cannot be used directly from thin section image [17]. 
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2.5 Fluid Flow Simulator 

There are several permeability simulation derived from Darcy’s equation. In this 

study the discussion on permeability simulation only focused on two main numerical 

simulations, namely, Pore Network Modeling (PNM) and Lattice Boltzmann Method 

(LBM).  

2.5.1 Fluid Flow Simulator using Pore Network Modeling (PNM) 

Network Modeling is a method to simulate fluid flow which simplifies the pore 

spaces into pores and connecting bonds. The simplification gives a possibility to 

simulate fluid flow in simple form for large networks. The use of network models to 

study fluid flow was first introduced by Fatt [34]. The models were based on 

interconnected network within a porous media. The initial work was conducted on 

two-dimensional and did not represent the real porous media. However, it is still the 

basis of the current use of networks for the prediction of transport properties. 

Chatzis and Dullien [35] modified Fatt’s models. They used a 3D model that 

consisted of sites which are connected to each other by bonds. Fatt’s initial network 

assumed that the bond intersections do not possess any volume of their own. The 

basis of these network models is that the void space of a porous medium can be 

represented by a graph of connected sites. The sites correspond to pore bodies while 

the interconnecting bonds are analogous to pore throats connecting the pore bodies. 

They compared models to laboratory data from sandstones and noted that regular 

networks combined with circular capillaries did not yield a realistic description of real 

sandstones.  

Bryant et al. [36] [37] used network models which were derived from a real 

porous media. The spatial coordinates of every sphere were measured thereby, 

enabling the microstructure of the medium to be completely determined; a network 

model which replicates the pore space was then extracted. Transport properties were 

then predicted from network models which were successfully compared with 

experimental values measured on real porous media. However, the permeability was 
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over predicted by a factor of two [38]. It is unlikely that most porous media will 

comprise equal-sized grains resulting in a constant coordination number, as such the 

application of the method used for network extraction by Bryant et.al [36] [37] [38] to 

more complex porous media is limited. 

A common method of extracting networks from microstructures involves defining 

the skeleton of the pore space as a set of points (voxels) at equal distances from two 

or more points of the solid grain [13]. This skeleton may be regarded as the centre line 

of the pore network; this line contains points where two or more lines meet. These 

points are the network nodes which are connected to other nodes through the pore 

throats. 

Lindquist et.al [39] [40] [41] extended a thinning algorithm in which the pore 

space is eroded until only the centrelines remain in order to analyze geometric 

properties such as connectivity and tortuosity of skeletons generated from various 

micro-CT imaged rock samples.  

Silin et.al [42] [43] [44] [45] introduced the maximal ball method to extract pore 

network from 3D images. The maximal ball method is a network model from 3D 

images without the need to first extract a skeleton. This method involves finding the 

largest inscribed spheres (maximal ball) that touch grain surfaces. Maximal balls 

(MB) are the basic elements used to define the pore space and detect the geometrical 

changes and connectivity. A maximal ball is defined as a set of voxels assembling the 

largest sphere, as such, a maximal ball must touch the grain surface and it cannot be a 

subset of any other maximal ball. Every maximal ball possesses at least one voxels 

that is not contained in any other maximal ball; the aggregate of all maximal balls 

defines the void space in a rock image. 

From previous studies it can be concluded that network modelling is one widely 

used technique to predict physical properties. The benefit of this method is a 

reasonable amount of pore geometry information that can be incorporated since it 

simplifies the pore space into pores and connecting bonds. With this assumption the 

flow simulation is simple enough for very large networks. However, this method has 

its limitation since the approach of this method is dividing the pore structure into 
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discrete pores and throats. Sometimes this approach arbitrarily alters the real pore 

structure. This method can be precise if the resolution of the 3D image is in very good 

resolution. However, for 3D images that are stochastically simulated from thin 

sections which have quite complex geometry and may contain statistical noise, this 

approach cannot handle this complexity [54] [58] [51] [17]. 

2.5.2 Fluid Flow Simulator using The Lattice Boltzmann Method (LBM)  

The Lattice Boltzmann Method (LBM) is a class of computational fluid dynamics 

methods for fluid flow. This method describes fluid motion as collisions of particle 

model which illustrates the physics at microscopic scale and averaged properties of 

the particle model to satisfy the Navier-Stokes equations.  

LBM first originated from Lattice Gas Automata (LGA) and was proposed by 

Hardy et.al. Hardy et.al [46] used this to study transport properties of fluids through 

discrete particles in a square lattice. The particles capture the essential physics and are 

distributed on discrete points and averaged properties on a square lattice and 

reproduced macroscopic properties. 

Frisch et.al [47] used the LGA method on a hexagonal lattice. The results showed 

the model was very close to solutions of the incompressible Navier-Stokes equation. 

McNamara and Zanetti [48] proposed the use of the Boltzmann equation to simulate 

LGA. The results showed LBM simulated the macroscopic equations more efficiently 

than LGA. Rothman [49] used the LGA to simulate fluid flow through simple and 

complicated geometries and compared the result with Darcy’s Law. Succi et.al [50] 

used the LBM to calculate permeability in a 3D random medium and showed good 

agreement with the laboratory data. Many studies have successfully applied the LBM 

to a wide range of fluid phenomena such as single-phase flow [51] [17] and two-phase 

flow [49] [52].  

Keehm et.al [17] verified the implementation of LBM on a simple cylindrical tube 

model. The permeability was simulated on three different cylindrical tube models 
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with different diameters. Figure 2.3 shows the three cylindrical tube models used by 

Keehm et.al. 

 

 

Figure 2.3 Three cylindrical tube models with different diameters used by Keehm 

et.al to compare permeability simulation on LBM with theoretical prediction [17]. 

The lower images show the local flux from each cylindrical tube model. 

 

The simulated permeability showed excellent agreement with the theoretical 

prediction. Figure 2.4 shows the simulated permeability using LBM simulation (dots) 

and predicted permeability from theoretical theory. 

 

Figure 2.4 Red dots show results of permeability simulation using LBM. 

Permeability from theoretical theory is shown on blue solid line [17]. 
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Several researches mentioned that the biggest advantage of the LBM is that it is 

readily applied to any arbitrary discrete geometry [53] [54] [55] [56]. LBM describes 

fluid motion as collisions of imaginary particles that are larger than the real fluid 

molecules but show almost the same flow behaviour at the macroscopic scale. While 

other methods for example, pore network modelling discretize either the geometry or 

the governing equations. LBM solves and recovers the governing Navier-Stokes 

equations from the collision rules between the particles that move on a lattice. The 

algorithm is easy and simple to implement. LBM can handle complicated pore 

geometry without simplifications or modifications [57] [58]. The LBM is a strong 

contender for the best fluids simulation approach currently available [59] [60]. 

2.6 Method of Generating 3D Porous Media of Rock 

Numerical fluid flow simulation through porous media can be used to predict 

permeability [6] [7] [8]. The input for this numerical simulation is an accurate 3D 

representation of the rock microstructure. Without this permeability cannot be 

accurately predicted. The most common method to achieve this 3D porous media is 

by using one of the following two methods: (1) X-Ray Computed Tomography (CT-

Scan), (2) 3D porous media reconstructed from 2D image.  

2.6.1 X-Ray Computed Tomography (CT-Scan) 

X-ray Computed Tomography (CT-Scan) can be used to generate the 3D porous 

media of reservoir rock. X-ray computed tomography can visualize the internal 

structure of rocks in three-dimensional visualization by determining the density 

variations of the rocks. Density variations usually correspond to pores or grains of the 

rocks. This technology is established and rapidly evolves in the image analysis of a 

porous media. It was initially developed for use in the field of medicine, but 

nowadays its use has been extended to a wide variety of fields.  

Dunsmuir et.al [21] have developed and extended the usage of CT-Scan to 

provide 3D images of reservoir rocks with a resolution down to pore scale. 
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Preliminary studies of fluid flow were performed through 3D images of reservoir 

rock. Another study demonstrated the usefulness of CT-Scan for two-phase flow in 

porous media [22]. Other researchers also stated about the derivation of physical 

properties from the topology of rocks such as conductivity [8]. It is believed many 

other physical properties can be derived from topology of rocks such as permeability, 

conductivity and elastic properties [23] [61]. 

The interest in carbonate reservoirs has made several researchers apply this 

method to carbonate samples. High resolution X-ray tomography was used by Arns 

et.al [62] to image a carbonate core plug from a vuggy reservoir in high resolution. 

Pore scale morphology and petrophysical properties were derived directly on the 

highest resolution digitized tomographic images and the computed permeability was 

in agreement with the experimental values. 

Dong et.al [45] imaged rock cuttings of poorly consolidated sandstone and vuggy 

carbonate using high resolution X-ray tomography and validated the extracted 

topologically equivalent networks through comparisons with networks derived by a 

different method.  

Riepe et.al [63] [64] applied a combination of high resolution X-ray tomography 

and Pore Network Modeling technology to unconventional reservoirs, namely, a tight 

gas reservoir in Oman and a fracture based reservoir in Vietnam. The computed static 

and dynamic petrophysical properties were simulated from 3D images and showed 

good agreement with the laboratory data. It is believed that this technology can be 

used as an alternative approach as a development concept for these types of 

reservoirs. 

There are several companies working on imaging through CT-Scan and 

developing simulation for petrophysical properties through 3D images of rocks. 

Digital Core (Australia), Ingrain (U.S.) and Numerical Rock AS (Norway) are some 

of the companies working on this area. Figure 2.5 showed 3D image from Ingrain.  
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Figure 2.5 The 3D rendering of raw CT-Scan cubic image of rock (Courtesy of 

Ingrain). The image shows that CT-Scan captured the details of the rock. 

 

Though the imaging technique of using X-ray tomography (high resolution) is a 

direct methodology to obtain 3D porous media structures at high resolution, it is still a 

very expensive and time-consuming task. Conducting such a test on a fragment of 

rock will take around 4-5 hours depending on the size of rock and resolution. 

Segmentation and the simulation processes of petrophysical properties is another 

problem which can only be run using a supercomputer or parallel computing of a very 

powerful workstation. 

2.6.2 3D Porous Media Reconstruction using 2D Image   

The 2D image of a thin section, in contrast to the 3D image, is often readily available. 

Thin sections are often taken from formations and imaged for geological evaluation 

such as for mineralogy study and sorting purposes. In the past, such 2D images have 

formed the basis for the reconstruction technique to generate 3D pore structure. 

Adler et.al [13] used the unconditional truncated Gaussian method to generate a 

3D image of pore structure. Porosity and two point correlation functions were used as 

an input. However, the use of the truncated Gaussian method for the correlation of the 

2D image is not always appropriate. Hilfer and Manwart [65] investigated the results 

from Adler et.al and calculated the local percolation probabilities. Results showed that 
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the reconstructed 3D pore structure has lower connectivity than the original 3D image 

from X-ray tomography. It means that connectivity cannot be properly reproduced. 

Several researchers proposed a hybrid method that combines the truncated 

Gaussian method and simulated annealing to reduce the computation time [4] [14] 

[15]. As studied by Manwart et.al [66], this method still does not improve the 

connectivity of the reconstructed 3D porous media. 

Okabe and Blunt [24] used a more sophisticated statistical technique. Multiple 

point statistics (MPS) was used to reconstruct the 3D porous media of a rock. This 

methodology was applied to sandstone and carbonate samples. The application of 

multiple point statistics to reconstruct 3D images using 2D image data has 

successfully been used to reconstruct the connectivity of sandstone and carbonate 

samples. The results showed through comparison between the original and the 3D X-

ray tomography image. However, applying such statistical properties to capture 

important features of a porous media and then generate 3D pore structure still needs 

an excessive amount of computational time. A reconstruction of a 128 voxel cube 

using a 512 square pixels size training image took around 10 hours CPU time using an 

Intel Xeon 1.7GHz computer with 1GB memory.  

Zhang et.al [67] modified the work of Okabe and Blunt by using sample points 

extracted from a training image as conditional data. Using MPS and sample points, 

each 2D newly reconstructed image is taken as a new training image to generate the 

next layer and at the end all the 2D images are successively stacked to reconstruct a 

3D structure. However, this method is still not practical and easily repeatable. 

Implementing this method on a 2G Athlon CPU processor with 2GB memory needed 

4779 seconds computational time for one realization of a 3D porous media. 

Keehm et.al [17] showed that porosity and two point correlation functions can still 

be used to correctly simulate connectivity and permeability in clastic sediments if a 

sequential indicator simulator (SISIM) is used [68]. This reconstruction method is 

commonly used in geostatistics to fill 3D volume with properties known at wells. This 

method used information of pores and grains extracted from a 2D image and used the 

same concept to reconstruct the 3D porous media. This method appears to produce the 
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correct connectivity when compared with 3D X-ray tomography. However, since the 

3D porous media reconstructed from this method is only in millimetre scale, this 

method sometimes failed to predict the anisotropy of permeability at core plug scale 

[68]. 

Kameda used the same method and modified the workflow. A combination of 2D 

to 3D porous media and the Upscaling method was applied. Kameda classified the 

input for the reconstruction method into three types: porous, patchy and tight, based 

on the observation on thin section images [9]. Keehm et.al [69] used the same 

approach. This modified method was applied to compacted bands of sandstone. 

Permeability measurements on the compacted bands are difficult to obtain since test 

samples of the compaction bands are not easily available and the material is poorly 

consolidated. By applying the appropriate volume fraction and building blocks this 

modification can compute correctly the permeability and is able to estimate the 

permeability anisotropy at core plug scale. However, to classify into the three types of 

input, detailed observation of thin section images is needed. 

Oren and Bakke [18] chose a different approach. Instead of applying the statistical 

reconstruction technique, a process based model was used. This method which 

accounts for the physical processes such as sedimentation, compaction and diagenesis 

can be extracted from a 2D image. Although this method reproduces local percolation 

probabilities and predicts permeability accurately, simulating the physical processes 

requires very intensive calculations and laboratory information such as grain size 

distribution. Figure 2.6 shows the comparison of pore space using the process based 

reconstruction method with a CT-Scan of the Fontainebleau sandstone. A comparison 

of the two images shows that the pore space is correctly simulated. 
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Figure 2.6 (a) Process Based Reconstruction image of the Fontainebleau 

sandstone as compared with (b) CT-Scan image of the same sandstone [18]. 

 

Jin et.al [70] used a similar approach to the process-based reconstruction method. 

A Physics-based depositional model was used to reconstruct natural sedimentary rock, 

and generated 3D images of the pore space at an arbitrary resolution. 

Amongst the methods discussed for the generation of a 3D porous media of rock 

microstructure, X-ray tomography (CT-Scan) despite its limitations, is the most 

promising since it is a direct measurement of the actual microstructure. Process-based 

reconstructions may be problematic for rocks if their depositional and diagenetic 

history is complex or unknown. Statistical methods, despite having limitation, still can 

be used to reconstruct connectivity correctly, at least for a clastic system.  

2.7 Summary 

There are many literatures on permeability prediction through the depiction of 2D and 

3D images of rocks. The Kozeny-Carman relation can be applied to thin section 

images to predict permeability. Although this method is easy to use the parameter is 

difficult to obtain and changing the resolution can be a problem and results in errors 

on the prediction. This method cannot be used directly from thin section images. 

PNM is a robust fluid flow simulator and can predict the permeability precisely 

depending on the resolution of the 3D porous media. A combination of the high 
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resolution 3D porous media and PNM can be very useful and precise even for 

unconventional reservoirs, such as tight gas and fracture based reservoirs. Although 

this combination is very useful, it is still a very expensive and time-consuming to 

obtain high resolution 3D porous media. This approach cannot be applied to 3D 

images that are stochastically simulated from thin sections which have quite complex 

geometry and may contain statistical noise. On the other hand, LBM can handle 

complicated pore geometry without simplifications or modifications. The combination 

of 2D to 3D porous media reconstruction using SISIM, fluid flow simulation (LBM) 

and upscaling method can be used to predict permeability at core plug scale in a 

clastic system. 

 

Table 2.1 Summary of Literature Review. 

Methodology Advantage Disadvantage 

Kozeny-Carman 

 Easy to implement and 

gives good correlation 

between permeability and 

other parameters  

 Specific surface area 

sensitive to resolution  

 Formation factor and 

geometrical factor from 

measurement  

 

 

Input scale for permeability prediction: mm scale 

Fluid Flow Simulator 

Pore Network 

Modeling 

(PNM) 

 Pore geometry information 

that can be incorporated for 

very large networks  

 Precise estimation if the 

resolution of 3D image is in 

very good resolution  

 Arbitrarily alters the real 

pore structure  

 Cannot handle complexity 

of stochastically generated 

porous media  
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Lattice 

Boltzmann 

Method 

(LBM) 

 Shows almost the same 

flow behaviour at 

macroscopic scale  

 No simplification  

 LBM can handle complex 

geometry without 

simplification  

 Time consuming if 

implemented on large size 

digital sample  

Method of Generating 3D Porous Media of Rock 

CT-Scan 

 Direct methodology to 

obtain 3D porous media 

structures  

 Take around 4-5 hours 

depending on the size of 

rock and resolution  

 Needs a supercomputer for 

segmentation and numerical 

simulation processes  

Input scale for reconstruction: mm and cm scale 

2D to 3D: 

Process Based 

Reconstruction 

 Accounts for the physical 

processes such as 

sedimentation, compaction 

and diagenesis which are 

extracted from 2D images  

 Requires intensive 

calculations  

 Some input from 

experiment such as grain 

size study  

 Problematic for rocks if 

their depositional and 

diagenetic history is 

complex or unknown  

Input scale for reconstruction: mm scale 

2D to 3D: 

Multiple Point 

Statistics 

 Applying high order 

statistics to reconstruct 

porous media  

 Need an excessive amount 

of computational time  

Input scale for reconstruction: mm scale 
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2D to 3D: 

Sequential 

Indicator 

Simulation 

 SIS simulates connectivity 

and permeability in 

sandstone  

 Reconstruction in real time 

on standard personal 

computer can only be 

implemented at mm scale 

 3D must statistically 

represent the measurement 

scale 

Input scale for reconstruction: mm scale 
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 CHAPTER 3 :  METHODOLOGY 

METHODOLOGY 

 

3.  

3.1 Introduction 

The main purpose of this study is to develop a new workflow to predict permeability 

at laboratory or core plug scale using information from full thin section images which 

can be implemented in real time on a standard personal computer. Several methods 

are combined as part of the workflow. The porous media reconstruction method from 

thin section image, fluid flow simulation and Upscaling method is part of the 

workflow. The first step in this study is to improve the computational time of 2D to 

3D porous media reconstruction. This method is based on work by Keehm [17] [68] 

[69]. The sample points as conditional data are added as part of the modification to 

improve the computational time. This method was tested and compared with known 

samples from 3D CT-Scan image. Details of this method will be discussed in Section 

3.2. 

The algorithm of 2D to 3D porous media method is tested on thin section images 

with known values of measured porosity and permeability. The porosity and 

permeability of the Berea sandstone core plug were measured using Poroperm. The 

results of the measurement will be used as a benchmark for permeability prediction 

from full thin section images. Details of the test will be provided in Section 3.3. 

Full thin section images are needed as an input for the new workflow to determine 

permeability at laboratory scale. Full thin section images have a similar scale with 

core plugs. To obtain this objective, a thin section was made from a vertical cut 
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through the core plug. The core plug was first saturated with blue dyed epoxy. The 

core plug was then cut into thin slice to be bonded on to glass slide. The thin slice was 

then grounded with carborundum on a rotating steel mortar into thin section. This part 

will be discussed in Section 3.4. Image collection from thin section images will be 

discussed in detail in Sections 3.4.2 to 3.4.3. 

Once a full thin section image is obtained, the grain size vertical profile trends 

were calculated from image. The trends showed the coarsening and fining parts of a 

thin section image and solve the heterogeneity at core plug scale. The building blocks 

were determined based on the trends shown from the grain size vertical profiles. The 

building blocks were used as a benchmark to upscale permeability from pore to core 

plug scale. The results from this workflow were compared with data from 

measurements. A general flow chart of this research is shown in Figure 3.1.  
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Figure 3.1 Research Flowchart 
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3.2 Simulation Study 

Simulation work in this thesis is part of a number of studies that analyze the steps to 

reconstruct 3D porous media from a thin section image (2D) and determine the 

accuracy of this method through comparison with a CT-Scan image. The first study 

was a preliminary study on image size and resolution to identify the minimum 

effective size and resolution to conduct fluid flow simulation. The Representative 

Elementary Volume (REV) concept was used in this study. A training image as an 

input to reconstruct 3D porous media was selected from a range of REV size of CT-

Scan image. The second study was a study on new input parameter to improve 2D to 

3D porous reconstruction running time on a standard personal computer. To 

determine the accuracy of this method, simulation work was conducted on a 2D image 

cut from a 3D CT-Scan image.  

The microstructure geometry of the rock was determined using Two Point 

Correlation Functions (TPCF). The porosity and variogram were calculated from a 

training image and used for input parameters. Sample points were added as new input 

parameter. This modification reduces the computational time to reconstruct the porous 

media. Sequential Indicator Simulation (SISIM) from Geostatistical Algorithm was 

used to reconstruct 3D porous media based on input parameters. Once the porous 

media is generated, fluid flow is simulated using the Lattice Boltzmann Method 

(LBM). The accuracy of this method is shown by comparing fluid flow simulation 

from reconstructed porous media with CT-Scan. All simulation studies were run on a 

personal computer Intel (R) Xeon CPU 2.67 GHz with 8 GB of RAM. Figure 3.2 

shows the detailed flow chart of the simulation work. 
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Figure 3.2 Detailed flow chart of simulation work 
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3.2.1 Samples: 3D CT-Scan Image for Simulation Study  

3D porous media reconstructed from a 2D image was tested on sandstone samples. 3D 

CT-Scan images of sandstone were used as the experimental data, which can provide 

reference data to evaluate the simulated results through comparison. Parts of the CT-

Scan images were used as an input for training image to reconstruct 3D from 2D 

images. The size ranges of the CT-Scan images are 400, 300 and 144 voxels (400 

voxels equal to 400 x 400 x 400 pixels) with a resolution of 4 to 15 μm per pixel. All 

CT-Scan image data used in this study were taken from the Imperial College London 

CT-Scan image library website. The image for the Fontainebleau Sandstone was from 

the Stanford University CT-Scan image library. Three of the six 3D CT-Scan image 

samples used in this study are shown below: 

 

 

Figure 3.3 The 3D CT-Scan images for simulation study a) Berea sandstone, b) 

Sandstone (S8), c) Fontainebleau sandstone. 

3.2.2 Preliminary Study on Image Size and Resolution for Fluid Flow 

Simulation 

The 3D cube image of the porous media is an input for fluid flow simulation. This 

image can be generated using CT-scanning experiment or 2D to 3D porous media 

reconstruction method. For CT-scanning, the size and resolution of the image 

acquired depend on the topology of the rock.  
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The end product of the simulation study is to produce a robust workflow to 

reconstruct 3D porous media from 2D images. To validate the result, a 2D image is 

cut from part of the 3D CT-Scan image. Permeability estimation will be compared on 

both images to show the accuracy of the reconstruction method. 

Based on previous study [9], 100
 
square pixels is the maximum input size to 

reconstruct 3D porous media in real time on a standard personal computer. Since the 

six 3D CT-Scan image samples used in this study have various sizes (400 to 144 

voxels) and resolutions (4 to 15 μm per pixel), image size and resolution tests need to 

be conducted. Figure 3.4 shows the work flow to conduct the image size and 

resolution test. For example a 3D CT-Scan image of the Berea sandstone has a size of 

400 voxels. This size will be reduced to 200 and 100 voxels, and the porosity and 

permeability of each image will be calculated and the fraction will be compared to the 

original size of 400 voxels. The results will show if there is any effect of resolution 

for fluid flow simulation. 

 

 

Figure 3.4 Workflow for fluid flow simulation test on different sizes and 

resolutions on the same sample. 

 



 

34 

 

3.2.3 Study on Sample Points as New Input Parameter for 2D to 3D Porous 

Media Reconstruction Method 

The method of generating 3D porous medias from 2D image using SISIM algorithm 

(geostatistics) was initially introduced by Keehm [17]. Several researchers stated that 

this method shows high accuracy in the reconstruction of connectivity of porous 

media in a clastic system. The input is porosity and variogram calculated from a 2D 

image. PC clones and parallel computing is mentioned in Keehm’s previous work. 

In order to improve the running time, new input parameter is needed. Sample 

points as conditional data are added as new input parameter. Sample point terms were 

introduced by Zhang [67] and used to reconstruct porous media using Multiple Point 

Statistics (MPS) method. Using this parameter improved the running time to 

reconstruct porous media as compared to the Okabe and Blunt method [24]. However, 

the reconstruction method using this algorithm is still tedious and not in real time on a 

standard personal computer. 

SISIM algorithm can still be used, since we are dealing with sandstone samples. 

Sample points extracted from a training image (2D image) are adopted and used as 

conditional data for the reconstruction. Table 3.1 shows the comparison between the 

method proposed by the author with Keehm’s method.  

 

Table 3.1  Comparison between the proposed method and Keehm (2003). 

 

Comparison 

Proposed Method Keehm (2003) 

Input Parameter 
 Porosity 

 Variogram 

 Sample Points  

 Porosity 

 Variogram 

Algorithm SISIM from SGEMS SISIM from GSLIB 

Reconstructed Scale mm scale mm scale 
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Visualization  
 Matlab 

 SGEMS 
Matlab 

Fluid Flow Simulator LBM LBM 

 

3.2.4 Representative Elementary Volume (REV) 

Measurement scales in the petroleum industry have a large span from seismic, to log, 

to laboratory core sample and finally to CT-Scanned micro scale [71] [72]. In order to 

deal with such a large range of scale, geoscientists usually refer to a representative 

elementary volume (REV). The REV is defined as the smallest volume over which a 

measurement can be made that will yield a value representative of the whole. In other 

words, the properties obtained at a scale smaller than the REV fluctuate considerably, 

while at a scale larger than the REV these fluctuations are significantly less [4] [45] 

[71] [73]. 

In this study, the REV concept was used to define the smallest size ranges that 

represent the whole size of 3D CT-Scan image. The limited size to reconstruct 3D 

porous media through a standard personal computer (PC) is around 10
6
 nodes (100 

voxels) [9]. The input ranges from samples are 400, 300 and 144 square pixels. 

Directly squeezing the size of images to 100 square pixels will affect information loos 

of the images as the resolution of the images are decreasing [17] [71] [74]. In this 

research, the REV for porosity is calculated based on the definition by Bear as [73]: 

   
      
   

                                                                                                                                 

where ni is the porosity of sub-volume i and (Uv )i is the volume of the void space in 

the volume Ui . 
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Figure 3.5 Schematic graph of how a measured property (porosity) varies with 

sample volume and the domain of the REV [73]. 

 

Figure 3.5 illustrates the concept of REV for porosity. The REV ranges from a 

minimum limit, which is the transition from the microscopic to the macroscopic level, 

to a maximum limit, which is the transition from homogenous to heterogeneous state. 

REV analysis is performed to ensure that the sample of concern is homogenous and 

therefore representative. 

3.2.5 Selection of Training Image (TI) 

Once the REV is confirmed, a training image to reconstruct 3D from 2D image was 

taken from REV scale ranges of 3D CT-Scan image, which also used as reference 

data to validate the reconstructed results. The 3D CT-scan image is a set of closely 

spaced consecutive 2D slices. These slices can be analogous as thin sections from 

core-plug or drill cuttings [9] [24] [67]. 
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In order to reconstruct a 3D structure effectively from a 2D cut, a representative 

2D image should be selected especially in terms of porosity [24] [67].  

 

 

Figure 3.6 Porosity Fluctuations within 3D CT-Scan Image Samples. 

 

Figure 3.6 shows porosities calculated from 2D slices of three 3D CT-Scan 

samples. For example, for Berea sandstone, the 3D has a size of 400 voxels with a 

resolution 5.3 μm. It means that the 3D images contain 400 stacking images with a 

real length 2.120 mm. For Berea sandstone, the fluctuations show different porosity 

values from 400 slices of the 2D image. 

3.2.6 Two Point Correlation Functions (TPCF) 

There are two assumptions to reconstruct 3D porous media from 2D image [17] [24] 

[67]. The training image (2D image) should be homogenous and isotropic. Two point 

correlation functions (TPCF) can be used to characterize the spatial arrangement and 

heterogeneity of micro structural rock geometry [28]. Conducted TPCF calculation on 
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images of rock can be used to determine whether the images are homogenous, 

isotropic or not. 

Rocks are usually composed of at least two phases; pores and grains. The physical 

properties of rocks (i.e. porosity and permeability) depend on the properties, amount 

and spatial distribution of each phase. Two point correlation functions is the 

possibility of finding the two end points of a segment with a certain length in the same 

phase, pore or grain. These functions can be defined by the statistical average of the 

spatial arrangement, denoted by 〈 〉, 

     〈          〉                                                                                                             

A 2D image contains of row and column of matrices pixels. Each pixel has its 

own value. From equation 3.2, h can be identified as lag vector between two data 

points (pixels). Two point correlation functions contain statistical information about 

the arrangement of the constituents in a composite material by measuring the 

probability of certain simple geometrical arrangements of the constituents. The two 

point correlation functions can be easily obtained using Fourier transforms [28] [29], 

        { {    }    {    } }                                                                                        

where F {.}, F
-1

{.} denotes Fourier and inverse Fourier transforms and * denotes the 

complex conjugate. 

 



 

39 

 

 

Figure 3.7 Two Point Correlation Functions Plot. S2(r) is unitless as it the 

probability of certain simple geometrical arrangements [28]. 

 

Figure 3.7 illustrates a TPCF plot calculated from a thin section image using 

Equation 3.3. Since the plot is based on the identification of lag vector between two 

data points in the 2D image, porosity can be obtained by averaging these values 

(using Equations 3.4 and 3.5). The isotropy parameter can be obtained by applying 

TPCF on different direction of the 2D image, for example from the x and y direction. 

If the plots from different directions are negligible, the image can be assumed as 

isotropic. 

3.2.7 Parameters for Simulation: Porosity, Variogram and Sample Points 

Based on the previous study [9] [17], there are two input parameters to reconstruct 3D 

porous media from 2D image (training image), first, porosity and second, variogram 

calculated from the training image. For computational purposes, sample points 
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extracted from the training image is added as the new parameter. Sample points are 

used as conditional data. The use of conditional data is to reduce the computational 

time to reconstruct 3D porous. Details of the results are discussed in Section 4.3.   

A 2D digitized image can be numerically converted into a binary 2D image 

(Figure 3.8 a). Pore space can be assigned as 1 (white color) and grain phase as 0 

(black color). Porosity on 2D binary image is determined by counting the number of 

pore pixels and dividing by the total number of pixels in the image. 

 

 

Figure 3.8 Input Parameters for Simulation: Porosity, Variogram and Sample 

Points Extracted from Training Image. 

 

The porosity can also be derived from two point correlation functions (Equations 

3.2 and 3.3) and can be defined by the statistical averages, denoted by 〈 〉,  

  〈    〉                                                                                                                                    

Replacing r from Equation 3.2 by 0, porosity can be calculated using following 

formula, 

                                                                                                                                             

The second parameter is variogram. The variogram has nearly the same meaning 

as two point correlation functions. Variogram reflects the dissimilarity of an image in 

spatial distributions; TPCF reflects similarity in spatial distributions. The equation to 

compute variogram [75] is as follows: 
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∑[             ]

    

   

                                                                               

From Equation 3.6, N(h) is the number of pairs of data locations spaced a distance of 

h apart. The variogram of the thin section image is related to the TPCF as follows: 

                                                                                                                                

The exponential variogram of the image is reproduced by an exponential function 

to ensure positive-definiteness of the variogram model. The equation of the 

exponential function is as follows: 

       [     ( 
  

 
)]                                                                                                    

where a is the practical range in geostatistics and c is the sill of the variogram. The 

range and sill are obtained by least-squares fit to the experimental variogram. Figure 

3.8 b shows the variogram calculated from the x and y directions of the 2D image on 

Figure 3.8 a.  

An additional parameter is sample points. There are only two phases on a 2D 

image, pore and grain. A 2D image comprises a number of continuous regions of pore 

spaces and grain spaces. MATLAB was used to extract the sample points. The 

porosity of the image is used as an input. 0.5% pixel is extracted using Tem with a 

size of 3x3 pixels. An example of sample points is shown in Figure 3.8 c.The red 

color represents the pore spaces region and blue color represents the grain spaces. For 

example, if a 2D image has a size of 200
2
 pixels which comprises 400000 matrices 

row and column then the sample points extracted are 200 points. 
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3.2.8 Stochastic Simulation: 2D to 3D Porous Media 

The use of 2D image to reconstruct 3D porous media can be justified under two 

conditions: the 2D image or training image should be homogenous and isotropic. The 

statistical averages can be replaced by volume averages when a rock is homogenous. 

The volume (3D) averages can be replaced by surface (2D) averages if it is also 

isotropic [17]. 

Realizations of 3D porous media were simulated using sequential indicator 

simulation (SISIM) conditioned to porosity and variogram of training image. The 

algorithm was taken from Stanford Geostatistical Modeling Software (SGEMS) by 

Remy et.al [75]. SGEMS is the next generation of Geostatistical Software Library 

(GSLIB) [76]. The training image was first reformatted from jpeg to sgems format 

using MATLAB and used as an input on SGEMS. 

In this algorithm, all the nodes in the 3D grid are visited along a random path. At 

each node, a local conditional cumulative distribution function (ccdf) for f(r) is 

computed. The ccdf is obtained by indicator kriging. First, a value for f (r) is drawn 

from the local ccdf. Next, this value is preserved as conditioning data and the 

algorithm proceeds to the next node along the random path. Finally when all the 

nodes are visited, one realization of the 3D binary field with the correct spatial 

statistics is generated. Figure 3.9 shows an example of a simulated 3D porous media 

[17].  

 

Figure 3.9 Three dimensional isosurface plot of a 3D reconstructed pore structure 

from SISIM [17]. 
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3.2.9 Permeability Estimation Using Fluid Flow Simulation  

Once the 3D porous media is generated, permeability is estimated by conducting 

numerical flow simulations on the 3D porous media. The reconstructed 3D porous 

media are geometrically very complex and may contain statistical noise due to the 

stochastic nature of their construction [17]. The Lattice Boltzmann Method (LBM) for 

fluid simulation is an appropriate choice for these cases. This method is a robust 

technique that simulates flow according to simple rules governing local interactions 

between individual particles and recovers the Navier-Stokes equations at the 

macroscopic scale [54].  

Its accuracy in describing flow through a porous media and the way it treated the 

complex pore geometry without any modifications or simplifications are the prime 

advantages of this method [17] [54] [51]. The LBM is a discrete computational 

method based upon the Boltzmann equation that considers a typical volume element 

of fluid to be composed of a large number of particles, represented by a particle 

velocity distribution function for each fluid component at each grid point following 

simple local rules.  

 

 

Figure 3.10 Illustration of a fluid forced through 3D digital image (Courtesy Ingrain). 

 

Figure 3.10 shows a simple illustration on how LBM works and solves the 

Navier-Stokes equations: 
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  ⃗   ⃗         ⃗                                                                                                             

where   is the density,  ⃗  the velocity of flow,   pressure,   viscosity and    body 

force. The Navier-Stokes equation can be solved as mentioned before by solving the 

discrete Boltzmann equation. The operation count is linear to the number of pore 

nodes where the fluid resides. Regardless of the complexity of the pore structure, the 

operation count per iteration is the same for the same number of pore nodes. The 

Boltzmann equation is solved by counting the particle density distribution at time t 

and location of r. From the local flux, a volume averaged flux can be calculated. 

Then, the absolute permeability is computed in a manner analogous to a laboratory 

measurement: a pressure head or body force is directly applied to a digital sample. 

The resulting fluid flux is computed and permeability is calculated according to the 

Darcy's law.  

  
〈 〉

  
                                                                                                                                      

The flow simulation is performed with pressure gradient (  ) assigned across the 

opposite faces of the 3D cube. Next, a volume averaged flux 〈 〉 is computed from the 

local flux. μ is the dynamic viscosity of the fluid. 
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3.3 Measurement 

3.3.1 Sample: Berea Sandstone Core Plug 

Berea sandstone is one of the rocks which have been widely used for laboratory 

experiments in the petroleum industry. This sandstone has been used for many years 

as a standard material in core analysis research and laboratory core flooding 

experiments. The rock is relatively well characterized and homogenous. It is well 

sorted with closely spaced planar bedding and well rounded predominately quartz 

grains, but it also contains minor amount of feldspar, dolomite and clays. This 

sandstone also occurs in the oil and gas producing formation in the Michigan basin. 

[18] [24]. The particular Berea sample that is used in this study has a size of 2 inch 

length and 1 inch diameter. The average of three measurements taken in the 

laboratory showed that the porosity is 17.5 % and the Klinkenberg-corrected air 

permeability 196.3 mD. Figure 3.11 shows the core plug of the Berea sandstone that 

was used for the measurement. 

 

 

Figure 3.11 Photograph of a Berea sandstone core plug. 
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3.3.2 Measurement Procedure 

The equipment used to measure the porosity and permeability of a core plug sample is 

the Poroperm. The Poroperm instrument is a porosimeter and permeameter used to 

determine properties of plug sized core samples at ambient confining pressure. In 

addition to the direct properties measurement, the instrument offers reporting and 

calculation facilities. Two types of gases are required to operate this equipment. 

Firstly, Nitrogen is used as the confining pressure conditioning and valve operation, 

and secondly, Helium is used for porosity measurement purpose. The Poroperm 

equipment is shown in Figure 3.12. This equipment is available at the Universiti 

Teknologi PETRONAS core laboratory. 

 

 

Figure 3.12 Poroperm equipment to measure porosity and permeability at ambient 

confining pressure. 
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Details of the flow chart to measure porosity and permeability is shown in Figure 

3.13 below: 

 

 

Figure 3.13 Details of the flow chart outlining the experiment procedure to 

measure porosity and permeability. 



 

48 

 

3.4 Thin Sections 

A thin section is a very thin slice of rock which is mounted on a glass plate (usually 

2” x 1”) called microscope glass. Usually the thickness of geological thin section is 

between 30 to 40 micrometers. At this thickness, light easily gets transmitted through 

the slides and most minerals can be observed through an optical microscope. The 

objective to carry out thin section analysis is usually for geological studies such as 

mineralogy and sorting of the rock formation. Blue dyed epoxy is used for grains 

fixation. The epoxy fills the pore space in the rock and blue is a color that does not 

normally occur in reservoir rock; therefore the blue areas can be recognized as pore 

space. On this section, measured Berea core plug was used to create thin section. To 

fulfil the objective of this study, the thin section was cut in vertical direction due to 

the length of the plug. The size of the thin section is assumed as the scale of the core 

plug. Preparations of the thin sections were conducted at PETRONAS Research Sdn. 

Bhd. (PRSB). Figure 3.14 shows the flow chart of thin section preparation. 

 

 

Figure 3.14 Thin section preparation flow chart. 
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3.4.1 Thin Section Preparation 

To produce a good thin section from a reservoir rock, the rock sample has to be 

cleaned and remnants of the reservoir fluids and drilling mud removed. This step is 

very important since good bonding and complete impregnation of the sample depends 

on this step. After cleaning and drying, the samples are vacuum-impregnated with 

blue-dyed epoxy resin to assist the recognition of porosity. Blue dyed epoxy is also 

used as a protection from damage, such as fracturing or plucking. The impregnation 

equipment at PRSB is shown in Figure 3.15 below, 

 

 

Figure 3.15 Impregnation equipment is used to vacuum and impregnate the 

samples with blue-dyed epoxy. 
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The next step is face lapping of the cut material that is used to produce a 

deformation free, smooth sample surface. This surface will be bonded to the glass 

slide. The last part is fine grinding to reduce the section thickness to 30 to 40 

micrometers. The section must be monitored carefully to detect any plucking that can 

damage the glass during the grinding process. The computerised grinding machine at 

PRSB is shown in Figure 3.15. 

 

 

Figure 3.16 Computerized grinding machines is used to produce a deformation free 

and smooth sample surface. 
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3.4.2 Image Collection 

A microscope equipped with a high-resolution digital camera and a personal computer 

(PC) was used for image collection. The equipment is located at the South East Asia 

Carbonate Research Laboratory (SEACARL), Universiti Teknologi PETRONAS. 

Figure 3.17 shows the flow chart of image collection using microscope. 

 

 

Figure 3.17 Flow chart of image collection. 

 

The microscope is an Olympus petrographic microscope BX-51 that is 

specifically designed for thin section observation. The high resolution digital camera 

is a mounted camera Olympus DP-72 that enables the collection of a full color image 

of 4140 x 3096 pixels and gives a file size of 1.51 Mb for one image. Because of high 

storage requirements and processing time involved, the image size was limited to 600 
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x 400 pixels and gave an image size of 500 kb. Figure 3.18 shows the microscope 

used for image acquisition. 

 

 

Figure 3.18 Microscope for image acquisition. The two magnifications used in this 

study are 12.5 and 40 times magnification. 

Magnification 

There are two types of magnification that were used for image collection in this study. 

The first was a 12.5 times magnification and second, 40 times magnification. These 

magnifications are provided from the objective lens and ocular lens. For example, a 

12.5 times magnification is from a 1.25 times objective lens and a 10 times ocular 

lens. The output of this magnification was an image with a coverage area of about 0.9 

x 11 mm
2
. Figure 3.19 shows an image collected using a 12.5 times magnification. 

Images collected from this magnification will be the inputs to obtain full thin section 

images. Details of the processes to stitch these images into full thin section image will 

be discussed in Section 3.4.4. 
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The second magnification was 40 times. The 40 times magnification was used as 

an input for 2D to 3D porous media reconstruction. The output of this magnification 

was an image which covered an area of about 2 x 3 mm
2
 of thin section. Figures 3.20 

(a) and (b) show images acquired by a magnification of 40 times. 

 

 

Figure 3.19 Image collected using a 12.5 times magnification. The coverage area is 

9 x 11 mm
2
. The yellow bar shows scale of the image. Polarization type is cross-

polarized 

Cross-polarized and plane-polarized 

Different types of polarization were used in this study. The polarizations are cross-

polarized and plane-polarized. Full thin section images were produced by stitching 

nine images subsection into an image mosaic. The mosaic construction is based on 

finding the locations of co-located objects and minimizing the transition zone between 

the individual subsections. The optical reaction of minerals to cross-polarized light is 
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a good indicator of the material properties independent of their color [77]. The 

independence of material properties through color with this polarized eased the 

merging and stitching of subsections. With cross-polarization, a 12.5 times 

magnification and about 30% overlay from individual subsection, the result of mosaic 

construction is excellent for the input of grain size vertical profile method. The full 

image of thin sections using mosaic construction is shown in Sections 4.7 and 4.8. 

The input for the 2D to 3D porous media reconstruction method is a binary image. 

Images produce by cross-polarized light give many colors. In this condition the pore 

and grain segmentation is difficult to be implemented.  Plane-polarization 

differentiates only pores with color of blue and others (usually almost all color in 

white). With these conditions the binary image through image processing and 

segmentation is easy to obtain [26] [71] [78]. Figure 3.20 shows photomicrographs 

from cross-polarized and plane-polarized image acquisitions. 

 

 

Figure 3.20 Thin section images of cross-polarized (a) and plane-polarized (b). The 

cross-polarized images are used as an input for full thin section image and the plane-

polarized images are used as an input for 3D reconstruction method. 
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3.4.3 Image Processing and Segmentation: 2D Binary Image 

One of the parameters for simulation is the porosity of thin sections. The general 

methodology for calculating porosity from thin sections involves conversion of a 

colored image to a binary image. The average of the binary image gives the value of 

porosity. As most thin sections use blue epoxy impregnation, the conversion to binary 

image requires computationally identifying pixels that are blue. Figure 3.19 shows the 

flow chart of image processing and segmentation of thin section image 

 

 

Figure 3.21 Flow chart of image processing and segmentation of thin section image. 
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Jmicrovision image analysis program was used for image processing and 

segmentation. Jmicrovision is an open source software for image processing and 

analysis. Several features of the program were therefore used to automate the method. 

The software allows one to “threshold” the images using HSV (Hue Saturation Value) 

histogram, a process also known as segmentation. Figure 3.22 shows the steps for 

image processing and image segmentation.   

 

 

Figure 3.22 Steps for image processing and segmentation. 

 

Plane-polarized image as an input is shown in Figure 3.22 a. To enhance the color 

of pores, threshold using HSV histogram was used. The results of threshold and 

segmentation shown in figure 3.22 b. The next step is converting RGB (Red Green 

Blue) to HSV format. Several studies have confirmed that converting the image from 

RGB to HSV will enhance the contrast of the pores [26] [68] [71] [78]. The HSV 

image is shown in Figure 3.22 c. The last step is converting HSV image into a black 

and white (BW) image (Figure 3.22 d). The last two steps were implemented using 

MATLAB. 
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3.4.4 Image Stitching: Full Thin Section Image 

The 12.5 times magnification with cross-polarized was used to cover the whole image 

area of thin section. The full image of the thin section can be obtained by nine image 

collections from different parts of the thin section with each image having about 30% 

overlay. Full thin section images were produced by merging and stitching individually 

acquired subsections into an image mosaic. An Autostitch program and MATLAB 

were used as a tool for this purpose. 

The objective of having a full thin section image is to give a representative image 

of thin section in centimetre scale [76]. This full image of thin section will be an input 

for grain size vertical profile (Section 3.5.1). Figure 3.23 shows the steps to acquire a 

full thin section image.  

 

 

Figure 3.23 Steps for image collections of the full thin section image. Nine images 

(middle) are collected as an input for full thin section image. A full thin section image 

is produced by stitching the nine images. 
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3.5 Upscaling Permeability: Pore to Core-Plug Scale 

Permeability prediction using 2D image from thin sections is sometimes 

overestimated and higher than the laboratory measurement permeability values of 

core plugs. The heterogeneity of the core plugs rendered an impossible permeability 

prediction from a single 2D image which is not representative of the sample. These 

images are very small (mm scale) and permeability prediction from these images 

needs to be upscaled to match the core plug measurements. In this study, a different 

approach was used to cover the heterogeneity of the sample. The grain size vertical 

profile from an image of the whole area thin section was used to determine the 

heterogeneity of the image at core plug scale. This profile gives the trends of 

coarsening and fining area of the whole thin section image. Figure 3.24 shows the 

flow chart of upscaling permeability. 
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Figure 3.24 Flow chart of Upscaling permeability pore to core plug scale. 
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3.5.1 Grain Size Vertical Profile from Thin Section Image 

Determining changes in bed sediment grain size from digital images was first 

employed by Rubin [79] [80]. Rubin used autocorrelation between two rectangular 

regions in digital images of sediment to determine the coarsening and fining trends. 

The actual grain size cannot be estimated with this method but sufficient for tracking 

changes in sediment grain size, which in some settings are related to flow changes. 

The spatial autocorrelation r between two rectangular regions (plaquettes) in an image 

is: 

  
∑      ̅      ̅  

√∑      ̅   √∑      ̅   

                                                                                           

where    and    are the intensities of corresponding pixels in two plaquettes, and  ̅ 

and  ̅ are the mean intensities of pixels in the two plaquettes. An autocorrelation 

curve is determined by calculating r as a function of distance between the two 

plaquettes. Grain size vertical profile can be implemented using autocorrelation curve 

which is computed for each row of pixels in the image. 

Figure 3.25 shows a Grain Size Vertical profile calculated in a digital image of 

bed sediment. The digital image of sediments in four beds with a total thickness is 6 

cm is presented in Figure 3.22 a. Figure 3.22 b shows the documentation of 

autocorrelation statistics of the bedding. Each of the four beds is inversely graded 

(gradually coarsening upward to the top contact and then abruptly fining at the base of 

the overlying bed). The overall sequence also coarsens upward [79]. 
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Figure 3.25 Grain Size Vertical profile calculated in a digital image of bed 

sediment. [79]. 

 

In this study, this methodology was used to classify the building blocks. This 

method can be used for all sediments with good resolution. For image acquisition, a 

magnification of 12.5 times was used to cover the whole area in the thin section 

(usually 2.54 sq. cm). The usefulness of this magnification is that it can cover the 

entire image fast, with only 9 image collections are required to cover the whole area 

of thin section. The vertical grain size profile can be calculated easily from the whole 

area of the thin section. The calculations for this grain size vertical profile 

(autocorrelation curves for about 3000 rows of pixels, smoothed at two scales) took 1 

second on a 2.67 GHz computer.  
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3.5.2 Building Blocks 

The computed permeability values of small sub-volumes sometimes overestimated the 

laboratory-measured permeability values since the input to compute permeability is in 

millimetre scale and the measured scale in centimetre scale [9] [68]. The 

overestimation is caused by permeability heterogeneity in the relatively large 

physically measured sample. To overcome these problems, upscaling on the basis of 

small building blocks can be combined with computed permeability. 

The effective permeability of a 3D network of building blocks (each with a known 

permeability) may take values between the harmonic and arithmetic average of the 

block permeability values, depending on their spatial arrangement. The bulk 

permeability parallel and normal to beddings are calculated as weighted arithmetic 

and harmonic averages, respectively, using the corresponding values [81] [82]. Figure 

3.23 

In this study, the grain size vertical profile was used as the basis for creating the 

building blocks. Previous studies showed that rocks which are coarse grained are 

more porous than the fine grained. We can assume that the coarser part is more porous 

and the finer part less porous. 

Figure 3.26 a. shows building blocks created based on the grain size vertical 

profile calculated from digital image. Building blocks were created based on the 

coarsening and fining trends calculated from digital image. Based on the gradation of 

the trends, there are three main trends which can be used as the base to create building 

blocks. Part c is the finest area with length   . There are two similar trends on part b. 

Based on the trends, we can assume that these areas have the same characteristics as 

the medium grain size. The coarser part is shown on a. 
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Figure 3.26 Building blocks created based on the grain size vertical profile 

calculated from digital image. Building blocks were created based on the coarsening 

and fining trends calculated from digital image. 

 

The volume fraction that is used for upscaling can be determined based on this 

information. The formula to calculate effective permeability is expressed as follows: 
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 CHAPTER 4 

4.                            RESULTS AND DISCUSSIONS 

 

 

4.1 Introduction 

This chapter presents the results and subsequent discussions of the results that are 

obtained in this work. The results would first describe the impact of image resolution 

and image size for fluid flow computation. The effectiveness of porous media 

reconstruction method from 2D to 3D image with comparison on 3D CT-Scan image 

is also presented.  

The computational generation of 3D porous media and fluid flow simulation 

which can be handled by a standard personal computer and in real time only can only 

be implemented at mm scale. Comparison through this method can only be précised if 

it is compared on the same scale. This size sometimes cannot cover the heterogeneity 

of a sample at laboratory scale (cm scale). The full image of a thin section (usually 

2.54 cm
2
), in principle has the similar size scale with the laboratory scale. 

To overcome these problems the upscaling method is applied. Grain size vertical 

profile which shows the trends of coarser and finer parts of a full thin section image is 

used as a benchmark to create building blocks for upscaling purposes. Each image 

which represents the coarse and fine parts of a thin section is used as an input for 2D 

to 3D porous media reconstruction method. The porosity and permeability are 

calculated from each reconstructed porous media (mm scale) and used as an input for 

upscaling (mm to cm scale). These workflows were applied to the Berea thin section 

and thin sections from the Malay Basin.  
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4.2 Preliminary Study on Image Size and Resolution for Fluid Flow 

Simulation 

Input for the fluid flow simulator (PNM or LBM) is a 3D image cube of a rock 

sample. Each cube has resolution and size which are used as input parameters for 

fluid flow simulation. In this subsection, three samples are discussed in detail on the 

impact of image resolution and size. The samples are the Berea sandstone, Sandstone 

S (8) and the Fontainebleau sandstone. These tests were conducted to decide the 

effective minimum size to run the fluid flow simulation. 

Image Size 

The impact of image resolution will be discussed in the next section on image 

resolution. Changes on the resolution will reduce the size of the 3D porous media. 

The bigger the size of the cube, the computational time will be longer. Figure 4.1 

shows the impact of image size with computational time on Berea Sandstone: 

  

 

Figure 4.1 Relation between image size and computational time of fluid flow 

simulation. The bigger the size of the cube (75 to 200 voxels) the computational time 

will be longer. 
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Based on previous studies, the effective size to run fluid flow simulation on a 

standard personal computer (PC) is 100 voxels [9] [17] [68]. A size more than 100
 

voxels will make the computational time not effective and not in real time. However, 

results on the impact of resolution shows that a direct reduction of the resolution 

without good arrangement will result in a loss of geometry information and will affect 

the connectivity of porous media (will be discussed on the image resolution section). 

Therefore to obtain the effective size, the Representative Elementary Volume (REV) 

needs to be identified before conducting the simulation. By applying REV, the 

minimum size that represents the whole sample can be determined. Reducing the 

resolution with proper steps will give effective size for simulation.  

Image Resolution 

The impact of image resolution was first tested on 3D CT-Scan image of 

sandstone. The test was first conducted on 3D CT-Scan of Berea Sandstone with an 

original size of 400 voxels (volume pixel) and resolution 5.3 μm (400
3
 x 5.3 μm = 

2.120 mm
3
 in physical volume). The resolution was reduced to 75 voxels with 28.2 

μm per pixel, the same physical volume of 2.120 mm
3
. 

Figure 4.2 shows the impact of resolution on Berea sandstone sample. The images 

showed that the connectivity of porous media is largely reduced with decreasing 

resolution. The biggest impact of pore structure and connectivity was severely 

compromised in the model with cell size resolution 28.2 μm. The porosity and 

permeability were calculated and simulation started from the original size of 400 

voxels, reduced to 200 voxels and decreasing to 75 voxels. The results were plotted 

based on the fractional change relative to the original 400 voxels with a resolution of 

5.3 μm per pixel. 

Figure 4.3 is the plot which showed that porosities were relatively unaffected with 

a reduction of resolution. The impacts on the simulated permeabilities were quite poor 

and affected the simulation results. A marked decrease in permeability was observed 

when the cell size changed from a resolution of 10.6 (200 voxels) to 28.26 μm (100 

voxels) per pixel. In contrast when the resolution reduced from 5.3 (400 voxels) to 
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10.6 μm (200 voxels) per pixel there was relatively little change in the permeability 

because the pore throats were fairly well resolved.  

 

 

Figure 4.2 3D porous media with the reduced scale to 200, 100, 75 voxels cubes 

of 19.6% porosity of 3D CT-Scan Berea sandstone from the original 400 voxels cube. 

The loss of image complexities are shown as the resolution decreased. 

 

 

Figure 4.3 The fractional changes value (unitless) of porosity and simulated 

permeability with respect to the original 400
 
voxels cube of Berea sandstone. L is 

unitless as it is a fraction of the size (e.g. 400 voxels/200 voxels = 2). 
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The second test was conducted on 3D CT-Scan of Sandstone S (8) with an 

original size of 300 voxels and resolution 4.9 μm per pixel (300
3
 x 4.9 μm = 1.470 

mm
3
 physical volume). The image size was reduced to 50 voxels with a resolution of 

29.4 μm per pixel, which has the same physical volume as the original 1.470 mm
3
. 

Figure 4.4 shows the impact of resolution on Sandstone S (8) sample. 

 

 

Figure 4.4 3D porous media with the reduced scale to 150, 75 and 50 voxels
 
cubes 

of 34% porosity of 3D CT-Scan Sandstone (S8) from the original 300 voxels cube. 

The loss of image complexities are shown as the resolution decreased.  

 

Figure 4.4 shows that the connectivity of porous media is largely reduced with 

decreasing resolution. The biggest impact of pore structure and connectivity was 

severely compromised in the model with cell size 29.4 μm (50 voxels). The porosity 

and permeability were calculated and simulated starting from the original size of 300 

then 150, 75, and 50
 
voxels. The results were plotted based on the fractional change 

relative to the original 300 voxels with a resolution of 4.9 μm per pixel. 

Figure 4.5 shows that porosities were relatively unaffected with a reduction of the 

resolution. The impacts on the simulated permeabilities were quite poor and affected 

the simulation results. A marked decrease in permeability was observed when the cell 

size changed from a resolution of 9.8 (150
 
voxels) to 29.4 (50

 
voxels) μm per pixel. In 
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contrast when the resolution reduced from 4.9 (300 voxels) to 9.8 (50
 
voxels) μm per 

pixel there was relatively little change in permeability because the pore throats are 

fairly well resolved. As noted in this second test, the fractional changes of the 

simulated permeability on cell size with a resolution of 19.6 μm (75 voxels) per pixel 

is still in good agreement with respect to the original cube. This is shown in Figure 

4.4 that the pore throats are still well preserved. In contrast with the Berea sandstone 

sample where the pore throats were not fairly resolved on 4 times reduction from the 

original cube, the results showed that the pore throats are fairly well resolved on 

Sandstone S (8) sample. The analysis from this is because Sandstone S (8) which has 

a porosity of 34 % is more porous than the Berea sandstone, which has a porosity of 

only 19.6 %. Since Sandstone S (8) is more porous, a reduction of 4 times from 

original cube could still fairly resolve the pore throats. 

 

 

Figure 4.5 The fractional changes value (unitless) of porosity and permeability 

with respect to the original 300 voxels cube of Sandstone S (8). L is unitless as it the 

fraction of size (e.g. 300 voxels/150 voxels = 2). 
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The third test was conducted on a 3D CT-Scan of the Fontainebleau sandstone 

with an original cube of 144 voxels and a resolution of 15 μm (144
3
 x 15 μm = 2.160 

mm
3
 physical volume). In contrast with the Berea Sandstone and Sandstone S (8) tests 

which were tested on 1, 2 and 4 times reduction of resolution from the original cube, 

the test on the Fontainebleau sandstone was conducted by reducing the resolution to 1, 

1.2, 1.33 and 1.4 times from original cube. The reason for choosing these reductions 

is because the size of the Fontainebleau sandstone sample is not as big as other two 

samples. The resolution is also not as good as other two samples. Figure 4.6 shows the 

impact of resolution on Fontainebleau sandstone: 

 

 

Figure 4.6 3D porous media with the reduced scale to 120 to 100 voxels cubes of 

14.6% porosity of 3D CT-Scan Fontainebleau sandstone from original 144
 
voxels 

cube. The loss of images complexities are shown as the resolution decreased. 

 

The images showed that the connectivity of porous media is largely reduced with 

decreasing resolution. The biggest impact of pore structure and connectivity was 

severely compromised in the model with cell size 21.6 μm (100
 
voxels). The porosity 

and permeability were calculated and simulated starting from the original size of 144, 

120
 
to 100 voxels. The results were plotted based on the fractional change relative to 

original 144 voxels with 15 μm resolution per pixel. 



 

72 

 

Figure 4.7 showed that porosities were relatively unaffected with a reduction of 

the resolution. The impacts on the simulated permeabilities were quite poor and 

affected the simulation results. A marked decrease in permeability was observed when 

the cell size changed from a resolution per pixel of 20 (108 voxels) to 21.6 μm (100
 

voxels) per pixel. In contrast when we changed from 15 (144 voxels) to 18 μm (120 

voxels) there was relatively little change in the permeability because the pore throats 

were fairly well resolved. The image resolution on the Fontainebleau sandstone (15 

μm per pixel) was not as good as the Berea sandstone (5.3 μm per pixel) and 

Sandstone S (8) (4.9 μm per pixel). The resolutions decreased less than twice from the 

original size of 144 voxels, since the original resolution is 15 μm per pixel. As shown 

in Figure 4.6 and Figure 4.7 the loss of complexity information of the porous media 

gave a great impact to the pore throats and the simulated permeability. 

 

 

Figure 4.7 The fractional changes value (unitless) of porosity and permeability 

with respect to the original 144 voxels cube of Fontainebleau sandstone. L is unitless 

as it is the fraction of size (e.g. 144 voxels/108 voxels = 1.2). 
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The conclusion can be taken from these three tests is that the image resolutions 

affect fluid flow simulation. Porosities values shown on each plot indicate that 

porosities are relatively unaffected by reduction of resolution. The reason for these 

phenomena is because porosity is just a fraction of the pore nodes over the total 

volume which will not affect much on the changes of resolution. For permeability, at 

lower resolutions the 3D images lose details in structural complexity which leads to a 

sharp overestimate of the computed permeability.  

The resolution requirements of rock samples through CT-Scan are also 

highlighted. The first two samples, Berea sandstone and S (8) sandstone were 

acquired using CT-Scan with a good resolution (5.3 μm and 4.9 μm per pixel) 

respectively. The resolution reductions of 50 % on Berea sandstone CT-Scan image 

(5.3 to 10.6 μm per pixel) and Sandstone S (8) (4.9 to 9.8 μm per pixel) are still in 

good agreement on the simulated permeability. However, for Fontainebleau 

sandstone, where its resolution (15 μm) is not as good as Berea and S (8), the 

reduction of resolution still in good agreement at 80% of the resolution reduction (15 

μm to 18 μm per pixel). The results showed that the complexity information of the 

porous media is well preserved at a resolution more than 18 μm per pixel for the size 

of a cube more than 100 voxels cube. 
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4.3 Study on Sample Points as New Parameter Input for 2D to 3D Porous 

Media Reconstruction Method 

The reconstruction of porous media from a 2D image using geostatistical (SISIM) 

method was initially introduced by Keehm [17] [68]. This methodology is good 

enough to reconstruct 3D porous media from 2D image especially on a clastic system 

[9]. In this study, the modification was made to improve the computational time of 

porous media reconstruction method. Sample points extracted from a training image 

were used as a conditional data which will improve the computational time without 

changing the output of this methodology. Table 4.1 shows the computational time 

between the modification and non-modified method (Keehm, 2003). 

  

Table 4.1 Comparison of running time between different types of conditional data. 

Type of 

Conditional Data 

Computational 

Time (Sec) 

Cond. SP 30 

Cond. TI 92 

No Cond. 998 

 

Cond. SP (the modification and proposed method) is the reconstruction of a porous 

media using sample points as conditional data, Cond. TI is the reconstruction of a 

porous media using training image as conditional data and No Cond. (the non-

modified method / Keehm, 2003) is the reconstruction of a porous media without 

conditional data. The modification method using sample points as conditional data 

shows an improvement on computational time. The results were plotted as a function 

of efficiency. 
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Figure 4.8 Computational time and time efficiency chart on different types of 

conditional data. (a) Proposed workflow to reconstruct 3D porous media, (b) using 

training image as conditional data and (c) the non-modified method (Keehm, 2003). 

 

Figure 4.8 shows the graph between the non-modified and the modification 

method. The methodology without conditional data needs 998 seconds to reconstruct 

one realization of porous media. The methodology using training image as conditional 

data only needs 92 seconds. The methodology using sample points as conditional data 

showed an improvement of computational time which is 30 times faster than the non-

modified method and 10 times faster than the Cond. TI. This means that the efficiency 

of the methodology has improved significantly. The structures of the three different 

methodologies are shown on Figures 4.9 – 4.11.  

The analyses from the results are that the use of sample points as conditional data 

has improved the computational time to reconstruct the 3D porous media of 

sandstone. The sample points which were extracted from the training image have the 

same statistical variations with training image. The variogram model also contains the 

same statistical variability as a training image. With sample point as conditional data, 

a value of f(r) which is drawn from conditional cumulative distribution function (ccdf) 
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is easily preserved. The time algorithm processes to reconstruct porous media is 

reduced since there are three inputs that limit the possibility of reconstruction. 

Porosity states the exact value of training image porosity. A variogram model and 

sample points made the visited along random path based on ccdf of all nodes to create 

3D cube easily to conducted since there are two information (variogram and sample 

points) which give information about ccdf of training image. 

Figures 4.9, 4.10, 4.11 show the three samples have similar structure of porous 

media. Variograms from three different orientation (x, y and z) directions show the 

same structure variability. This means that sample points as conditional data improve 

the computational time of this method and make it more efficient to use on a standard 

personal computer. 
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Figure 4.9 Structural and variogram (x=50, y=50 and z=50) using sample points 

as conditional data. The structure showed that the complexities of porous media are 

well preserved. The variograms are align showed that the image is isotropic. 
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Figure 4.10 Structural and variogram (x=50, y=50 and z=50) using training image 

as conditional data. The structure showed that the complexities of porous media are 

well preserved. The variograms are align showed that the image is isotropic. 
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Figure 4.11 Structural and variogram (x=50, y=50 and z=50) without conditional 

data. The structure showed that the complexities of porous media are well preserved. 

The variograms are align showed that the image is isotropic. 
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4.4 Reconstruction from 2D to 3D Porous Media of Sandstone 

The porous media reconstruction method needs a 2D image as an input. The 

validation of this technique requires a 3D image of a porous media. Therefore for this 

purpose the reconstruction was conducted on 2D cross sections selected from 3D X-

ray tomography images. Six samples were used: Berea Sandstone, Sandstone S (8), 

Fontainebleau Sandstone, Sandstone S (4), Sandstone S (2), Sandstone S (4) and 

Sandstone S (5). Three first samples will be described in detail in this section and the 

last three samples will be summarized and discussed briefly in Section 4.5. 

4.4.1 Berea Sandstone Reconstruction 

The 2D to 3D porous media reconstruction was first tested on Berea sandstone. The 

2D image was cut from a 3D x-ray tomography image of Berea sandstone. The 

purpose is to compare and validate the results of the reconstruction method with 

experimental CT-Scan data. The sample has a size of 400
3
 voxels with a resolution of 

5.3 μm per pixel.  The porosity and permeability calculated and simulated from the 

3D image of the reference data was 19.6% and 1360 mD respectively. A training 

image (2D image) was selected in terms of REV and porosity within a 2D slice along 

a 3D CT-Scan image of Berea sandstone. REV is required to identify the minimum 

sizes that represent the whole sample. With minimum sizes the fluid flow simulation 

can be conducted in real time on a standard personal computer. Reducing the 

resolution directly to minimum sizes without conducting REV will affect the 

connectivity and simulated fluid flow as shown in Section 4.2. 

Representative elementary volume (REV) 

The minimum size of elementary volume can be determined from REV calculation. 

Porosity can be used to determine the REV. There were 20 subsections from the 

center of the original 400 voxels, ranging from 20 to 400 voxels at intervals of 20 

voxels on each edge which were taken to calculate the REV of the CT-scan image of 
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Berea sandstone. The porosity was calculated on each subsection and the edge lengths 

at which porosity converged was used to decide the REV range. 

Figure 4.12 shows the calculated porosities from 20 subsections of the Berea 

sandstone 2D images. The cube figure on the right shows the initial 3D image of the 

Berea sandstone on which REV was conducted. The blue line shows the trends of 

porosity values. The REV range for Berea sandstone was decided based on the trends. 

The fluctuations of porosity values are significantly less from 200 to 400 voxels. 

 

 

 

Figure 4.12 The REV graph for porosity on 3D CT-Scan of Berea Sandstone. The 

cube on the right shows the original size of 3D image and the cube on the left shows 

the selected REV cube. 

 

The size of 200 voxels was selected as the minimum elementary volume. This size 

was taken as the input for training image selection. This size was also considered 

based on the preliminary study on impact of image resolution. The size of 200 square 

pixels of 2D image is still a considerable size if it was reduced to 100 square pixels 

since the size of input for the reconstruction method and fluid flow simulation on a 

personal computer which can be running in real time is at this size.  
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Selection of training image 

The 3D CT-scan image is a set of closely spaced consecutive 2D slices. These slices 

can be analogous as thin sections. In order to reconstruct a 3D porous media from a 

2D image, a representative 2D image should be selected in terms of porosity. Porosity 

from each consecutive 2D slices was calculated. Each of image gave different 

porosity and showed fluctuations as shown on Figure 4.9. The selected REV size for 

the Berea sandstone sample is 200 voxels, which means there are 200 images of 2D 

slices within the cube. The average porosity was calculated from all 2D slices within 

3D porous media of selected REV size. The average porosity was taken as a 

benchmark and the training image was selected based on this value.  

Figure 4.13 shows porosity fluctuations within the 200 voxels cube of Berea 

sandstone sample. The arrow shows the interval at which the training image was 

selected. This image was selected at interval 0.23 mm which had a porosity close to 

the average porosity from 200 images and original size of the reference data.  

 

Figure 4.13 Porosity fluctuations within the 3D CT-Scan of Berea Sandstone 

sample. Arrow indicates the slice which was taken as training image. 
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Two point correlation function (TPCF) 

The assumption to reconstruct 3D porous media from a 2D image is the input which 

should represent a homogenous and isotropic sample [9] [17] [68]. TPCF was used to 

determine the geometrical micro structural spatial arrangement of the Berea sandstone 

training image which was selected in the training image selection part. 

Figure 4.14 shows two orthogonal (vertical and horizontal) TPCF graph from the 

training image of Berea sandstone. Since TPCF shows the spatial probability of 

certain simple geometrical arrangements of the image, TPCF can be used to identify 

the structural type of sample. The differences between vertical and horizontal TPCF 

graphs are negligible and indicate that the training image is nearly isotropic. With the 

assumption of mm scale, a training image also can be assumed as homogenous. With 

this condition, the training image is ready to be used for porous media reconstruction. 

The porosity of the training image is 19.8 %. The porosity is calculated based on 

Equation 3.4. 

 

 

Figure 4.14 Horizontal and vertical TPCF graph from Berea sandstone training 

image. The graphs of TPCF are align showed that the training image is isotropic. 
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The autocorrelation length (a) observed from the graph is about 20 grid units 

(Figure 4.14). Based on previous work [17] [68], for accurate simulation of absolute 

permeability, the size of the samples should be 10 a, which means that 200 x 200 

pixels is an appropriate size for training image 

2D to 3D porous media reconstruction of Berea Sandstone 

There are three input parameters to reconstruct porous media; porosity, variogram and 

sample points. All parameters were calculated and extracted from the training image 

(2D image). The porosity and variogram were calculated using Equations 3.4 and 3.6. 

Figure 4.15 shows the selected training image from a sample of the Berea 

sandstone on SGEMS user interface. The training image was initially on image format 

(JPEG or BMP). The training image was reformatted to SGEMS format before it was 

used for simulation. The effective size for 2D to 3D porous media reconstruction 

method and fluid flow simulation is 100 voxels. Since the input was 200 square 

pixels, the image needed to be reduced to 100
 
square pixels. Due to the change of size, 

the resolution of the image changed from 5.3 μm (200 square pixels) to 10.6 (100 

square pixels) μm. This resolution is still in good agreement based on the preliminary 

study in Section 4.2. 

Figure 4.16 shows the variogram calculated from the x and y directions of Berea 

sandstone training image. The variogram model for input simulation was decided 

based on these variograms.  Equation 3.8 was used to calculate variogram model and 

used as an input for simulation.  
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Figure 4.15 Berea sandstone Training image on SGEMS user interface. The image 

was reformatted from JPEG format to SGEMS format. 

 

 

Figure 4.16 Variogram calculated from training image from x and y direction. The 

variograms are aligned showing that the image is isotropic. 
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Figure 4.17 shows the sample points extracted from the training image of Berea 

sandstone. The sample points are the new input parameter for proposed 3D porous 

media reconstruction method. The sample points were created using MATLAB and a 

3 x 3 extracting template was applied and as a result 0.5 % pixels were extracted from 

training image. This sample points was used as a conditional data for simulation. This 

new parameter reduces the computational time to reconstruct 3D porous media from 

2D image. The analysis of the computational time improvement is shown in Section 

4.5. 

 

 

Figure 4.17 Sample points extracted from Berea sandstone training image. 

 

Geostatistical algorithm was used to reconstruct the 3D porous media. The 

porosity, variogram and sample points as conditional data were used as inputs for this 

reconstruction. The algorithm was the sequential indicator simulation (SISIM) from 

SGEMS. Figure 4.18 shows the cross sectional area of a simulated 3D porous media. 

The statistical parameters were calculated from XY, YZ and ZX planes to verify that 

the simulated 3D porous media have the same statistical properties as the training 

image. The variograms of three planes are very close to the variogram model 

calculated from the training image (Figure 4.19). This verifies that the simulated 3D 

porous media of Berea sandstone has the same variability with the training image. 

 



 

87 

 

  

Figure 4.18 Cross sectional areas (x = 50, y = 50 and z = 50) of a reconstructed 3D 

porous media from 2D image of Berea sandstone. The structure showed that the 

complexities of Berea sandstone porous media are well preserved.  

 

 

Figure 4.19 Variogram comparison between training image (2D image) and 

reconstructed 3D porous media. The variograms are aligned for 2D and 3D showing 

that the images are isotropic. 
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Figure 4.20 shows the exterior of the simulated 3D porous media of Berea 

sandstone by geostatistics. The color of pore is shown in white color and grain in 

black color. MATLAB was used to visualize the exterior and the pore space of the 

simulated 3D porous media. The absolute permeability was computed in a manner 

analogous to a laboratory measurement according to the Darcy's equation which 

directly applied to a simulated 3D porous media. The permeability on the simulated 

3D porous media was 1562 mD and on the 3D CT-Scan image was 1360 mD. The 

permeability from the simulated 3D porous media was in reasonably good agreement 

with 3D CT-Scan image. The accuracy of this method is about 87%, which shows 

implicitly that this method produces correct connectivity. 

 

 

Figure 4.20 Exterior 3D realization of Berea sandstone by geostatistics. The pores 

are shown in white and grains in black color. 

4.4.2 Sandstone S (8) Reconstruction  

The 3D porous media reconstructed from 2D image was tested on the second sample, 

Sandstone S (8). This sample has a size of 300 voxels with a resolution of 4.9 μm per 

pixel. The calculated porosity of the reference 3D CT-Scan of Sandstone S (8) was 

34% and the simulated permeability was 13169 mD. The training image (2D image) 

was selected in terms of REV and porosity within a 2D slice along with the 3D CT-

Scan image of Sandstone S (8). 
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Representative elementary volume (REV) 

There are 30 subsections from the center of the original 300 voxels, ranging from 10 

to 300 voxels at an interval of 10 voxels on each edge which were taken to calculate 

the REV of the CT-scan image of Sandstone S (8). The porosity was calculated on 

each subsection and the edge length at which porosity converged was used to decide 

the REV range. 

 

 

Figure 4.21 The REV graphs for porosity on 3D CT-Scan of Sandstone S (8). The 

cube on the right shows the original size of 3D image and the cube on the left shows 

the selected REV cube. 

 

Figure 4.21 shows the calculated porosities of 30 subsections. From the graph the 

range of REV was decided for 300
 
voxels cube of Sandstone S (8). The REV range 

for Sandstone S (8) is from 150 to 300 voxels. To give better representation, 300 

voxels was selected as the minimum elementary volume based on REV trends. This 

size was taken as the input for training image selection. The sample has a good 
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resolution (4.9 μm per pixel) and porous (about 34% of porosity), and reducing the 

size to 100 voxels (14.7 μm of resolution) is still in good agreement for fluid flow 

simulation.  

Selection of training image 

A training image of Sandstone S (8) was selected from 300 voxels of CT-Scan Image. 

The porosity from each consecutive 2D slices within the cube was calculated. Each of 

the images gave a different porosity as shown in Figure 4.22. The average porosity 

was taken as a benchmark and the training image was taken based on this value. 

The arrow in Figure 4.23 shows the selected training image to reconstruct the 3D 

porous media. This image was selected from a 2D slice with an interval of 1.2 mm 

which had porosity close to the average porosity of 300 images. 

 

 

Figure 4.22 Porosity fluctuations within the 3D CT-Scan Sandstone S (8) sample.  

Arrow indicates the slice which was taken as training image. 
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Two point correlation function (TPCF) 

TPCF was used to characterize the microstructural spatial arrangement of Sandstone S 

(8) training image. The training image of Sandstone S (8) was selected in training 

image selection part.  

Figure 4.23 shows a two orthogonal (vertical and horizontal) TPCF graph from 

the training image of Sandstone S (8). The differences of vertical and horizontal 

TPCF graphs are negligible and indicate that the training image is nearly isotropic. 

The autocorrelation length (a) is about 20 grid units which can be observed from the 

TPCF graph (Figure 4.23). The porosity of Sandstone S (8) training image is 35%. 

The appropriate size for accurate simulation of absolute permeability is 10 a. The size 

of 300 x 300 pixels is an appropriate size for training image. 

 

 

Figure 4.23 Horizontal and vertical TPCF graph from Sandstone S (8) training 

image. The graphs of TPCF are aligned showing that the training image is isotropic. 
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2D to 3D porous media reconstruction of Sandstone S (8) 

Figure 4.24 shows the selected Sandstone S (8) training image on SGEMS user 

interface. The training image of Sandstone S (8) was first reformatted to SGEMS 

format before it was used for simulation. MATLAB was used to reformat the image. 

The effective size for 2D to 3D porous media reconstruction method and fluid flow 

simulation is 100 voxels. Since the input was 300 square pixels, the image needs to be 

reduced to 100 square pixels.  

 

 

Figure 4.24 Sandstone S (8) training image on SGEMS user interface. The image 

was reformatted from JPEG format to SGEMS format. 

 

Figure 4.25 shows the variogram calculated from x and y direction of Sandstone S 

(8) training image. The variogram model for input simulation of Sandstone S (8) was 

decided based on these variograms. 

Figure 4.26 shows the sample points extracted from the training image of 

Sandstone S(8). The sample points were created using MATLAB and a 3 x 3 

extracting template was applied and as a result 0.5 % pixels were extracted from 

Sandstone S (8) training image. This sample points are used as conditional data for 

simulation. 
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Figure 4.25 Variogram calculated from x and y direction of training image. The 

variograms are aligned showing that the image is isotropic. 

 

 

Figure 4.26 Sample points extracted from Sandstone S (8) training image. 

 

The porosity, variogram and sample points as conditional data which were 

calculated and extracted from Sandstone S (8) training image were used as inputs for 

this reconstruction. The sequential indicator simulation (SISIM) algorithm from 

SGEMS was used to reconstruct 3D porous media of Sandstone S (8). Figure 4.27 
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shows the cross sectional areas of a simulated 3D porous media. The statistical 

parameters were calculated from XY, YZ and ZX planes to verify that the simulated 

3D porous media have the same statistical properties. The variogram of three planes 

are very close to the variogram model calculated from the training image (Figure 

4.28). This verifies that the simulated 3D porous media of Sandstone S (8) has the 

same variability with Sandstone S (8) training image. 

 

 

Figure 4.27 Cross sectional areas of a reconstructed 3D porous media from 2D 

image of Sandstone S (8). The structure showed that the complexities of Sandstone 

S(8) porous media are well preserved.  
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Figure 4.28 Variogram comparison between training image (2D image) and 

reconstructed 3D porous media. The variograms are aligned for 2D and 3D showing 

that the images are isotropic. 

   

Figure 4.29 shows the exterior of the simulated 3D porous media of Sandstone S 

(8) by geostatistics. The pores are shown in white and grains in black color. 

MATLAB was used to visualize the exterior and the pore space of the simulated 

Sandstone S (8) porous media. The absolute permeability was computed in a manner 

analogous to a laboratory measurement according to the Darcy's equation which was 

directly applied to a simulated 3D porous media. The permeability calculated from the 

simulated 3D porous media is 13105 mD and 13169 mD on 3D CT-Scan image. 

Through comparison, the simulated permeability accuracy of this method is about 

99%. The permeability from the simulated 3D porous media is in very good 

agreement with the 3D CT-Scan image, which shows that this method produces 

correct connectivity of Sandstone S (8). 
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Figure 4.29 Exterior 3D realization of Sandstone S (8) by geostatistics. The pores 

are shown in white and grains in black color.  

4.4.3 Fontainebleau Sandstone Reconstruction 

The 3D porous media reconstructed from 2D image was tested on a third sample, the 

Fontainebleau sandstone. This sample has a size of 144 voxels and a resolution of 15 

μm. The porosity of the reference 3D CT-Scan of Fontainebleau is 14.7% and the 

permeability is 2262 mD. A training image (2D image) was selected in terms of REV 

and porosity within a 2D slice along a 3D CT-Scan image of Fontainebleau.   

Representative elementary volume (REV) 

Fourteen subsections from the center of the original 144 voxels, ranging from 10 to 

144 voxels at an interval of 10 voxels on each edge were taken to calculate the REV 

of the CT-scan image of Fontainebleau. The porosity was calculated on each 

subsection and the edge length at which porosity converged was used to decide the 

REV range. 

Figure 4.30 shows the calculated porosities of the 14 subsections. The cube on the 

right of the graph in Figure 4.30 is an initial cube of Fontainebleau sandstone. From 

the graph the range of REV was decided for 144 voxels of Fontainebleau sandstone. 

The REV range for Sandstone S (8) is from 75 to 144 voxels. The minimum 
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elementary volume was selected for this sample is 120 voxels. This size was taken as 

the input for the training image selection prior to the resolution of the image. The 

resolution of selected REV image is 15 μm per pixel. Reducing the size from 120 to 

100 voxels changed the resolution to 18 μm per pixel. This resolution is still in good 

agreement based on impact of image resolution preliminary study.  

 

 

Figure 4.30 The REV graph for porosity on 3D CT-Scan of Fontainebleau 

sandstone. The cube on the right shows the original size of 3D image and the cube on 

the left shows the selected REV cube. 

Selection of training image 

The training image was selected from 120 voxels of Fontainebleau sandstone. The 

porosity from each consecutive 2D slice within the cube was calculated. Figure 4.15 

shows that each of the image gave a different porosity and showed fluctuations. The 

average porosity was taken as a benchmark and the training image was taken based on 

this value. 
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The arrow in Figure 4.31 shows the selected training image to reconstruct the 3D 

porous media. This image was selected from a 2D slice on interval an interval of 1.1 

mm which had porosity close to the average porosity from 120 images.  

 

 

Figure 4.31 Porosity fluctuations within the 3D CT-Scan Fontainebleau sample. 

Arrow indicates the slice which was taken as training image.  

Two point correlation function (TPCF) 

TPCF was used to characterize the micro structural spatial arrangement of 

Fontainebleau sandstone training image. The training image was selected in the 

training image selection part.  

Figure 4.32 shows a two orthogonal (vertical and horizontal) TPCF graph from 

the training image of Fontainebleau sandstone. The TPCF shows the spatial 

probability of certain simple geometrical arrangements of the image. The differences 

of the vertical and horizontal TPCF graphs are negligible and indicate that the training 

image is nearly isotropic. The autocorrelation length (a) is about 10 grid units which 
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can be observed from the TPCF graph (Figure 4.32). The porosity of the 

Fontainebleau sandstone training image is 15.1%. The appropriate size for accurate 

simulation of absolute permeability is 10 a. A size of 120x120 pixels is appropriate 

for the training image. 

 

 

Figure 4.32 Horizontal and vertical TPCF graph from Fontainebleau sandstone 

training image. The graphs of TPCF are aligned showing that the training image is 

isotropic. 

2D to 3D porous media reconstruction of Fontainebleau sandstone 

Figure 4.33 shows the selected training image from Fontainebleau sandstone on 

SGEMS user interface. The training image was initially on image format (JPEG or 

BMP). The training image was reformatted to SGEMS format before it was used for 

simulation. The effective size for 2D to 3D porous media reconstruction and fluid 

flow simulation is 100 voxels. Since the input was 120
 
square pixels, the image need 

to be reduced to 100 square pixels for the input of the 3D reconstruction method.  
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Figure 4.33 Fontainebleau sanstone training image on SGEMS user interface. The 

image was reformatted from JPEG format to SGEMS format. 

 

Figure 4.34 shows the variogram calculated from the x and y directions of 

Fontainebleau sandstone training image. The variogram model for input simulation 

was decided based on these variograms. Figure 4.35 shows the sample points 

extracted from the training image of Fontainebleau sandstone. These sample points 

were used as a conditional data for simulation.  
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Figure 4.34 Variogram calculated from x and y direction of training image. The 

variograms are aligned showing that the image is isotropic. 

 

 

Figure 4.35 Sample points extracted from Fontainebleau sandstone training image. 

 

Geostatistical algorithm was used to reconstruct the Fontainebleau sandstone 

porous media. The porosity, variogram and sample points as conditional data were 

used as inputs for this reconstruction. Figure 4.36 shows the cross sectional areas of a 

simulated 3D porous media of Fontainebleau sandstone. Figure 4.37 shows the 
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statistical parameters that were calculated from XY, YZ and ZX planes to verify that 

the simulated 3D porous media have the same statistical properties. The variogram of 

three planes are very close to the variogram model calculated from the Fontainebleau 

sandstone training image. This verifies that the simulated 3D porous media has the 

same variability with training image. 

 

 

Figure 4.36 Cross sectional areas of a reconstructed 3D porous media from 2D 

image of Fontainebleau. The structure showed that the complexities of Fontainebleau 

sandstone porous media are well preserved. 
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Figure 4.37 Variogram comparison between training image (2D image) and 

reconstructed 3D porous media. The variograms are aligned for 2D and 3D showing 

that the images are isotropic. 

 

Figure 4.38 shows the exterior of the simulated 3D porous media of Fontainebleau 

sandstone by geostatistics. The pores are white and the grains are black in color. 

MATLAB was used to visualize the exterior of the simulated 3D porous media. The 

absolute permeability was computed and directly applied to a simulated 3D porous 

media. Permeability calculated from the simulated 3D porous media is 1550 mD and 

2262 mD on the 3D CT-Scan image. The simulated permeability on the 3D porous 

media is in reasonably good agreement with an accuracy of about 70% when 

compared with the 3D CT-Scan image. Thus implicitly shows that this method 

produces good connectivity on Fontainebleau sandstone sample. 
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Figure 4.38 Exterior 3D realization of Fontainebleau sandstone by geostatistics. 

The pores are shown in white and grains in black color.  
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4.5 Validation of 2D to 3D Porous Media Reconstruction  

The porous media reconstruction method was tested on six samples. The steps and 

results of three samples have been discussed in detail in the previous section. Table 

4.2 below shows briefly the results of six samples after the reconstruction method and 

simulation of fluid flow. 

 

Table 4.2 Comparison of physical properties obtained from reconstruction and CT-

Scan image.  

 
Original 3D 

CT-Scan 

Selected 

REV Size 

Training 

Image 

Original  

3D CT-Scan 

Reconstructed  

3D Porous 

Media 

  (%) k (mD)   (%) k (mD) 

B 
   

19.6 1360 19.8 1512 

400
3 

200
3 

200
2 

S(8) 

   
34 13169 35.1 13105 

300
3 

300
3 

300
2 

F 

   
14.7 2262 15.1 1550 

144
3 

120
3 

120
2 

S(2) 

   
24.6 3898 25.8 4244 

300
3 

300
3 

300
2 

S(4) 

   
17.1 215 18.5 187 

300
3 

150
3 

150
2 

S(5) 

   
21.1 4651 21.2 3954 

300
3 

300
3 

300
2 
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The REV size was selected based on study on the impact of image resolution and 

image size in Section 4.2. The autocorrelation length (a) was also used as a parameter 

to justify the length size of REV. Based on the literature [17], the best length that 

contain the repetitiveness of the sample should be L ≥ 10 a. The best resolution grid 

for fluid flow simulation should be dx ≤ a/10. The entire selected images for training 

image fulfill the requirement of L ≥ 10 a. On the resolution grid not all samples fill 

the requirement of dx ≤ a/10. However the selected training image can still be 

considered a good training image since the samples have good image resolution.  

For example, the REV sizes of training image on samples S (8), S (2) and S (5) 

were taken as 300 x 300 pixels. This is the maximum size of the REV ranges. 

However, decreasing the resolution to 100 x 100 pixels as an input for simulation on 

SGEMS is still in good agreement since the samples have good resolution of the 

image (4.9 μm, 5 μm and 4 μm). For Fontainebleau sandstone and S (4), their 

respective resolution of 15 μm and 9 μm per pixel is not as good as the other three 

samples. The best minimum representative volumes were selected on 120 and 150 

voxels. The high accuracy on the reconstructed method as compared with CT-Scan 

data is due to the comparison on the same scale size, which is in millimetre scale. 

4.6 Effectiveness of Grain Size Vertical Profile  

The grain size vertical profile method is to determine grain size from the digital image 

of a sediment. The digital image can be acquired from thin sections using microscope 

or SEM. This method was introduced by Rubin [79]. The basic principle of this 

method is to calculate the spatial autocorrelation based on the intensities of 

corresponding pixels of the image. The autocorrelation curve is computed for each 

row of pixels in the image and grain size is related to the mean autocorrelation for the 

average of pixels offsets. From this method, the coarsening and fining trends can be 

determined but not the actual grain size of the sediment [80]. Figure 4.39 shows the 

effectiveness of this method in the determination of coarsening and fining trends in a 

digital image of sandstone. 
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Figure 4.39 Grain size vertical profile in a thin section. The arrow a with the 

yellow line is the coarse area (porous) and the arrow b with the yellow line is the fine 

area (tight). 

 

Figure 4.39 shows the trends of coarsening and fining of sandstone. The area 

marked by the yellow arrow b demarcates the fining part of the thin section. This area 

can be clearly observed on the image. The area marked by the yellow arrow a 

demarcates the coarsening part of the thin section. The coarse grains can be observed 

clearly on the area marked by a. We can assume that the bigger the grain size (coarse) 

the sample is usually more porous. However, the smaller the grain size (fine) the 

sample is usually tighter. Using this as quality control from a thin section will 

differentiate between porous and tight areas in a thin section. From this the 

heterogeneities of a thin section at cm scale can be resolved. 
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4.7 Upscaling Permeability: Pore to Core Plug Scale   

A combination of 2D to 3D porous media reconstruction and fluid flow simulation 

can be a robust tool to estimate permeability from a thin section image. Sections 4.4 

to 4.5 show the accuracy of permeability determination using these methods. Sample 

points as conditional data were used to modify the non-modified method. The non-

modified method was introduced by Keehm [17]. Results showed that this 

modification had an effect on the computational time and made reconstruction time 

more effective (Section 4.3). 

Although it is easy to implement, the computational task to generate 3D porous 

media and fluid flow simulation which can be handled by a standard personal 

computer and in real time can only be implemented in mm scale. Permeability 

determination can be accurate if the thin section is homogenous at core plug scale. A 

comparison through this method can only be precise if it is compared on the same 

scale (mm to mm scale). At this size, it may not cover sample heterogeneity at 

laboratory scale (cm scale). A full image of a thin section, in principle, has a similar 

scale with the laboratory scale. 

To overcome these problems upscaling method was applied. Building blocks for 

upscaling purposes were created based on grain size vertical profile. A grain size 

vertical profile which shows the trends of coarser and finer parts of a full thin section 

image was calculated based on Equation 3.11.  

There are two inputs to use the upscaling permeability formula, and they are, 

fraction and permeability from each block. The fraction estimation of the coarse and 

fine parts can be separated based on information from the grain size vertical profile 

trends. Each image which represents the coarse and fine part of thin section will be 

used as an input for the 2D to 3D porous media reconstruction method. The porosity 

and permeability were calculated from the 3D porous media (mm scale) and used as 

an input for upscaling (mm to cm scale). These workflows were applied on thin 

section of the Berea sandstone and sandstone from the Malay Basin.  
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4.7.1 Application of Upscaling Permeability Workflow to Berea Sandstone 

Thin Section 

A section from the Berea sandstone core plug was cut vertically and made into a thin 

section. The core plug has a laboratory-measured porosity of 17.5% and a 

Klinkenberg-corrected air permeability of 196.3 mD. Upscaling permeability 

workflow was applied on the Berea sandstone thin section. This workflow was 

compared with laboratory data to demonstrate the accuracy of the workflow. 

Figure 4.40 shows scale comparison between the core plug and a full length of a 

thin section of the Berea sandstone. The core plug used in this study is shown on the 

left. The core plug has a length of 2 inch (5.08 cm) and a diameter of 1 inch (2.54 

cm). A section was cut vertically from the core plug and made into a thin section 

(right figure). The reason is to create an image from a thin section similar in scale as 

the core plug scale. There is no information about bedding plane of the core plug. The 

permeability flow measurement was conducted following the direction of the blue 

arrow which is shown on Figure 4.40. 

 

 

Figure 4.40 Scale comparison between a core plug and the full length of a thin 

section of the Berea sandstone. The length of a full thin section image is 4.5 cm.  
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4.7.1.1 Full thin section image of the Berea sandstone 

The first step of the workflow is to acquire a full thin section image. The assumption 

in this study is that a full thin section image has a similar scale (cm scale) with the 

core plug. Permeability measurement on the core plug is traditionally used as 

permeability spatial distribution input for reservoir modelling. In this step, a full thin 

section image was captured using a microscope. A magnification of 12.5 times was 

selected. This magnification is appropriate to cover all areas of thin section with good 

resolution and minimal number of images. Through this magnification, a full thin 

section image at cm scale can be covered with nine images. These images were 

collected and stitched together into one image. Figure 4.41 shows the workflow and 

process of image collection and stitching to create a full thin section image. 

 

 

Figure 4.41 Image acquisition and stitching processes on full thin section image of 

Berea sandstone. Nine images were acquired (middle) by using the 12.5 times 

magnification. The length of the image (right) after the stitching process is 4.5 cm. 
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The nine images in the middle of Figure 4.41 are images of the Berea sandstone 

thin section taken with a 12.5 times microscope magnification. These images were 

taken under cross-polarization. The cross-polarization light gave a color contrast on 

each type of mineral. The overlay on each image is around 20%. The purpose of the 

overlay is to identify the common areas of each image for the stitching process. With 

these conditions stitching of the images is easier to conduct. The figure on the right of 

Figure 4.41 shows the result of nine images stitched together to form an image of 4.5 

cm length.  

4.7.1.2 Grain size vertical profile and building blocks of full thin section image of 

the Berea sandstone 

Once a full thin section image has been acquired, the next step is to calculate the grain 

size vertical profile trends normal to the length of the thin section. The first reason for 

calculating in this direction is because the permeability flow (Kn) was measured in 

this direction. Second, we assume that low variation occurred on the lateral side of the 

thin section in relation to the permeability flow. The grain size vertical profile was 

applied on the full thin section image and calculated using MATLAB. The grain size 

vertical profile was calculated using Equations 3.11.  

The spatial autocorrelation was calculated based on the intensities of the 

corresponding pixels of the image. From this the coarsening and fining trends could 

be determined. Figure 4.42 shows the grain size vertical profile calculated from a full 

thin section image of the Berea sandstone. 

The grain size vertical profile trends were calculated on a full thin section image 

of the Berea sandstone. The length of coverage of the grain size vertical profile trend 

is 4.5 cm. With this length, we assume that these trends profile has a similar scale 

with the core plug. The autocorrelation curve was computed for each row of pixels on 

a full thin section image of Berea sandstone. The grain size vertical profile trends are 

related to the mean autocorrelation for a range of pixel offsets.  
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Figure 4.42 Grain size vertical profile trends on full thin section image of Berea 

sandstone. The pink trends show the profile before smoothing and the blue trends 

show the profile after smoothing. 

 

The pink trends show the statistical intensity values of each row which were 

calculated from each pixel. The results were noisy because the statistics of each row 

were calculated for small samples. The noise on the pink trends was reduced by 

smoothing and averaging successive rows. The result of smoothing is shown on the 

blue trends as a smooth line. Calculations for this vertical grain size profile took less 

than 1 second on an 8 GHz personal computer.  
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The smoothing (blue) trends on a full thin section image of the Berea sandstone 

showed the coarsening and fining part of the image. Based on the trends, there were 

three sections where the blue line had bends. A right bending was observed on area a 

and this right bending indicated that the area had coarse grain. Based on literature 

[79], the coarse grain area is more porous and fine grain area is less porous. 

Since three types of bending were observed, it could be assumed that the far left 

bending represented an area with fine grains (tight). This type of bending is shown on 

area c. Area b is classified as the representative of the patchy area as classified by 

Kameda [9]. Kameda classified into three types, namely coarse (porous), fine (tight) 

and mixed (patchy).  

From observation on the trends, we could conclude that area a has the coarsest 

grains, area b is coarser than area c, and area c has the finest grain. Building blocks 

for upscaling were created based on the classification of these areas and it was 

assumed that low variation occurred on the lateral side of the thin section. The length 

of each area is indicated by a yellow arrow marked as a, b and c. The fractions for 

upscaling permeability were determined based on these lengths. 

4.7.1.3 Upscaling permeability workflow on the Berea sandstone thin section 

The weighted arithmetic and harmonic mean was used to determine the permeability 

on sandstone/shale reservoir sequences. The weighted arithmetic mean was used to 

average permeability values parallel to bedding (horizontal) direction, while weighted 

harmonic mean is used to average the permeability values perpendicular to bedding 

(vertical) [81] [82]. 

The same concept was applied to the upscaling permeability workflow. The 

building blocks were created based on the grain size vertical profile trends of a full 

thin section image. Since the whole area of thin section was in cm scale (similar to the 

scale with the core plug), it was assumed that permeability anisotropy of the core plug 

was covered. 
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The permeability determined directly using the 2D to 3D porous media was 

sometimes higher or lower than those derived from core plug measurement. The 

reason is because of the heterogeneity of the core plug and the input for this was only 

in mm scale. Since the input for permeability measurement for reservoirs usually 

come from core plug measurements, permeability determination from this method 

needs to be upscaled. 

In order to test the accuracy of the upscaling permeability workflow, the 

workflow was applied on a full thin section image where the permeability was already 

known from laboratory test. In the example, a full thin section image of the Berea 

sandstone was used. There are two inputs for the upscaling formula, namely, fraction 

and permeability from each block. The fraction is based on the grain size vertical 

profile trends. As shown in Figure 4.42, there are three areas: a, b and c. The 

permeability (k) at pore scale size from each image representative building block is 

estimated using 2D to 3D porous media reconstruction and fluid flow simulation. 

A total of 35 images were collected using a microscope with 40 times 

magnification and plane-polarized light. This magnification was appropriate for the 

input of 2D to 3D porous media reconstruction. Plane-polarization was used for easier 

image processing and pore grain segmentation. From the 35 images, three images 

which represented the a or porous area (coarse grain), b or patchy area and c or tight 

area (fine grain) were selected. It was assumed that low variation occurred on the 

lateral side of the thin section. The selection of each image on each block was then 

justified. 

The 2D to 3D porous media reconstruction and fluid flow simulation was applied 

to estimate the permeability at pore scale from each image. Figure 4.43 shows the 

building blocks and the application of the upscaling permeability workflow on a full 

thin section image of the Berea sandstone. 
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Figure 4.43 Building blocks for upscaling permeability workflow on a full thin 

section image of the Berea sandstone. The building blocks and fractions of 

heterogeneity are shown in the middle and the pore scale permeability estimations on 

each block of the Berea sandstone thin section are shown on the right. 

 

Based on the grain size vertical profile, the length fraction of porous area (la) was 

0.75 cm, the length fraction of the patchy areas (lb1) was 0.75 cm and (lb2) 1.5 cm and 

the length fraction of the tight area (lc) was 1.5 cm. 

The three images which represented the porous area, patchy area and tight area 

were collected. Image processing and segmentation processes were applied on these 

images to obtain 2D binary images. The resolution of each image after these processes 

was 10 μm per pixel with a size of 100
 
square pixels. The size and resolution are of 

appropriate size as mentioned in Section 4.2. These images were used as inputs to 
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estimate the permeability from each building block using 2D to 3D porous media 

reconstruction and fluid flow simulation. The workflow followed the steps in the 

simulation study. An estimation of the porosity and permeability from each image are 

summarized in Table 4.3. 

 

Table 4.3 Estimation of porosity and permeability from each representative building 

block of the Berea sandstone thin section.  

Type Porosity (%) Permeability (mD) 

Porous / Coarse (a) 20.1 1002.1 

Patchy (b) 15.2 382.5 

Tight / Fine (c) 9 73.6 

 

Equations 3.12 and 3.13 for upscaling were used to estimate the effective 

permeability in the vertical and horizontal directions at laboratory (core plug) scale. 

The resulting estimates of upscaling porosity and permeability are summarized in 

Table 4.4 
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Table 4.4 Comparison between the porosity and permeability from upscaling 

workflow on thin section and core plug measurement on the Berea sandstone. 

Type Porosity (%) Permeability (mD) 

Core Plug 17.5 196.3 

Upscaling (Kn) 15.1 166.5 

Upscaling (Kp) 15.1 382.8 

 

The porosity was calculated using the arithmetic average from three images. The 

value was 15.1 % as compared to 17.5 % from laboratory measurement. The 

permeability which was estimated using upscaling permeability workflow was 166.5 

mD when estimation is normal to permeability flow (Kn) and 382.8 mD when parallel 

to permeability flow (Kp).  

Figure 4.44 shows a comparison of the permeability derived from upscaling and 

direct core plug measurement. The blue dots are the pore scale permeability 

estimation on each representative image of the building blocks. The red line is 

permeability measured from core plug and the green line is permeability from a full 

thin section image by applying upscaling permeability workflow. The red line value is 

equal to one since it has 100% similarity with the measured value. The green line and 

blue dots are compared to the measured values and the comparison is shown in the 

figure below.  

 



 

118 

 

 

Figure 4.44 Berea sandstone permeability comparison: Estimated permeability of 

building blocks representative image (blue dots), upscaling permeability workflow 

(green line and green ellipse) and laboratory data (red line and red ellipse). The y axis 

is has no unit.  

 

There are two pore scale permeability that are overestimated and one is 

underestimated. It shows that permeability prediction on mm scale cannot cover the 

heterogeneity at core plug scale. The accuracy of applying upscaling permeability 

workflow is about 85 % through comparison on Kn with laboratory measurement. It 

shows that applying this workflow on a thin section can cover the heterogeneity at 

core plug scale and improve the prediction of permeability at laboratory scale. 
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4.8 Case Studies: Application of Upscaling Permeability Workflow to Thin 

Sections from the Malay Basin 

Three thin sections from Wells A, B and C (names of the wells are not real) in the 

Malay Basin were used to apply upscaling permeability workflow. The information 

that were available are the porosity and permeability measurements from core plugs. 

No information was available as to from which parts of the wells were these thin 

sections obtained. It was assumed that the thin sections were made from the cuttings, 

sidewall core plug or chips at the same depth as the core plugs were extracted. 

4.8.1 Application of Upscaling Permeability Workflow to Thin Section from 

Well A 

The first thin section tested is from the reservoir of Group I, Malay Basin. The data 

was provided by PETRONAS Research Sdn. Bhd. (PRSB). The sample was from 

Well A at a depth of 1501.14 m. The sample was a sandstone which was deposited in 

a fluvial channel. The porosity and permeability of the core plug were 28.7% and 

1085 mD respectively. There was no information about the type of bedding. It was 

assumed that the thin section was made from cuttings or chips from Well A. 

Permeability was measured on the core plug that was extracted from the same well 

and depth.  

Figure 4.45 shows a thin section from Well A. The length of the full thin section 

image is 2.8 cm. Since there is no information about the bedding plane of the core 

plug, the workflow to obtain full thin section image is applied on the normal to the 

longest length of the thin section. The purpose is to sample the longest length that is 

near or similar to core plug scale. It was assumed that there is low variation parallel to 

the longest length of the thin section as the information of bedding plane is unknown. 
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Figure 4.45 Thin section of sandstone from Well A. 

4.8.1.1 Full thin section image of sandstone from Well A 

To apply upscaling permeability workflow on the thin section from Well A, the first 

step is to acquire a full thin section image of the thin section. A full thin section image 

was captured using microscope. Nine images were collected from different parts of 

the thin section. These images were collected and stitched together into one image. 

Figure 4.46 shows the process of image collection and stitching into one image. 

The nine Images in the middle are the images of the thin section from Well A 

taken from different parts of the thin section. The figure on the right side shows the 

result of nine images stitched together to form a single thin section of 2.8 cm length.  
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Figure 4.46 Image acquisition and stitching processes on a full image of a thin 

section of sandstone from Well A. Nine images were acquired (middle) by using the 

12.5 times magnification. The length of the image (right) after stitching is 2.8 cm. 

4.8.1.2 Grain size vertical profile and building blocks of sandstone from Well A 

The next step is to calculate the grain size vertical profile trends from a full thin 

section image of Well A. The spatial autocorrelation was calculated based on the 

intensities of corresponding pixels of a full thin section image of Well A. From this 

the coarsening and fining trends of a full thin section image of Well A could be 

determined. Figure 4.47 shows the grain size vertical profile calculated from a thin 

section of Well A from the Malay Basin.  

The grain size vertical profile trends were calculated on a full thin section image 

of Well A. The coverage length of the grain size vertical profile trend was 2.6 cm. 

The actual length of a total image of the thin section was 2.8 cm. The length was cut 

and reduced to 2.6 cm to create a full rectangular image of the sandstone.  
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Figure 4.47 Grain size vertical profile trends on a full thin section image of 

sandstone from Well A. The pink trends show the profile before smoothing and the 

blue trends show the profile after smoothing.  

 

With this length, it was assumed that this profile had a similar scale with the core 

plug. The autocorrelation curve was computed for each row of pixels on a full thin 

section image of the sandstone from Well A. The pink trends show the image 

statistical intensity values of each row which were calculated from each pixel of the 

full thin section image. The blue trends showed the reduction and smoothing of noise 

on the pink trends.  
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The smoothing (blue) trends on the full thin section image of Well A showed the 

coarsening and fining part of the image. Based on the trends observed in the full thin 

section image, there were two areas where the trends had bends. The bend on the left 

on area b was representative of fine/tight grains. Two of the sections had this fine 

grained material. There were three sections which had coarse grained (area a) and 

were porous. The building blocks for upscaling permeability workflow were created 

based on the classification of these areas. The length of each area was used as a 

fraction for the upscaling input. 

4.8.1.3 Upscaling permeability workflow on thin section from Well A 

The building blocks were created based on the grain size vertical profile trends of the 

full thin section image of Well A. The length of the full thin section image was 2.6 cm 

and it was assumed that the anisotropy of core plug was covered and resolved through 

the grain size vertical profile trends on a full thin section image. 

To apply upscaling permeability workflow on the thin section, there were two 

inputs, namely, the fraction length from grain size vertical profile trends and 

permeability estimation from each block. The fraction length for the full thin section 

image is shown in Figure 4.47. As shown in Figure 4.47, there are two areas: a and b 

which the trends are bending. The permeability at core plug scale size from each 

image representative building block was estimated. 

A total of 30 images were collected. From the 30 images, two images which 

represented the a area (porous and coarse grained) and b area (tight and fine grained) 

were selected. The assumption is that low variation occurred on the lateral side of the 

thin section. The 2D to 3D porous media reconstruction and fluid flow simulation was 

applied to estimate the permeability at pore scale from each image. Figure 4.48 shows 

the upscaling permeability workflow on a full thin section image of the sandstone 

from Well A.  
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Figure 4.48 Building blocks for upscaling permeability workflow on a full thin 

section image of sandstone from Well A. The building blocks and fractions of 

heterogeneity are shown on the middle and the pore scale permeability estimations on 

each block of sandstone from Well A thin section are shown on the right.   

 

Based on the grain size vertical profile on the full thin section, the length of the 

fraction of porous area (la) is 0.3 cm, 0.4 cm and 0.9 cm. The length of the fraction of 

tight area, lb is 0.5 cm and 0.5 cm. Building blocks were created based on the trends. 

Two images which represented the porous area and tight area were collected and 

processed. These images were used as inputs to estimate the permeability from each 

building block using 2D to 3D porous media reconstruction and fluid flow simulation. 

The estimated porosity and permeability from each image are summarized in Table 

4.5. 
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Table 4.5 Estimated porosity and permeability from each representative building 

block of thin section from Well A. 

Type Porosity (%) Permeability (mD) 

Porous / Coarse (a) 32.6 1766.7 

Tight / Fine (b) 14.6 258.4 

 

Upscaling permeability workflow was used to estimate the effective permeability 

at laboratory scale (core plug scale). The resulting estimates of upscaling porosity and 

permeability are summarized in Table 4.6.  

 

Table 4.6 Comparison between the porosity and permeability from upscaling 

workflow on thin section and core plug measurement on sandstone from Well A. 

Type Porosity (%) Permeability (mD) 

Core Plug 28.7 1085 

Upscaling (Kn) 20.2 544.4 

Upscaling (Kp) 20.2 1186.6 

 

The porosity was calculated using the arithmetic average from three images. The 

value was 20.2 % as compared to 28.7 % from laboratory measurement. The 

permeability which was estimated using upscaling permeability workflow was 544.4 



 

126 

 

mD when estimated normal to the thin section length (Kn) and 1186.6 mD when 

parallel to the thin section length (Kp).  

This estimation was compared with the laboratory results which were measured 

normal to the thin section length. The value of permeability obtained from PRSB 

Laboratory was 1085 mD. There was no information about the bedding of the core 

plug. The accuracy of applying this workflow is about 90 % through comparison on 

Kp with the laboratory results. Figure 4.49 shows results of the estimated upscaling 

porosity and permeability. 

 

 

Figure 4.49 Sandstone from Well A permeability comparison: Estimated 

permeability of building blocks representative image (blue dots), upscaling 

permeability workflow (green line and green ellipse) and laboratory data (red line and 

red ellipse). The y axis has no unit.  

 

Figure 4.49 shows a comparison of the permeability derived from upscaling 

workflow and direct core measurement. The blue dots represent the estimated pore 
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scale permeability on each representative image of building block of the thin section. 

The red line is the permeability obtained from PRSB. The green line is the 

permeability obtained from a full thin section image by applying upscaling workflow. 

The green line and the blue dots were compared respective to measurement value. 

One of the pore scale permeability results was overestimated and the other was 

underestimated. It shows that permeability prediction on mm scale could not cover the 

heterogeneity at core plug scale. The accuracy of applying upscaling permeability 

workflow is about 90 % through comparison on Kp with laboratory measurement. It 

shows that applying this workflow on a thin section could cover the heterogeneity at 

core plug scale and improved the prediction of permeability at laboratory scale.   

4.8.2 Application of Upscaling Permeability Workflow to Thin Section from 

Well B 

The second thin section tested was from the reservoir of Group J, in the Malay Basin. 

The data was also provided by PETRONAS Research Sdn. Bhd. (PRSB) from Well B 

at a depth of 1397.5 m. The rock was deposited in the lower part of an estuary. The 

porosity and permeability from core plugs were 30.6 % and 3700 mD respectively. 

Figure 4.50 shows the thin section from Well B. The length of the full thin section 

image was 2.8 cm. Since there was no information about the direction of the bedding 

plane of the core plug, the workflow to obtain a full thin section image was applied 

normal to the length of thin section. The purpose was to sample the longest length that 

was near or similar to the core plug scale. Low variation was assumed on the lateral 

side of the thin section. 
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Figure 4.50 Thin section of sandstone from Well B. 

4.8.2.1  Full thin section image of sandstone from Well B 

To apply upscaling permeability workflow on the thin section from Well B, the first 

step was to acquire a full thin section image of Well B. A full thin section image was 

captured using a microscope. Nine images were collected from different parts of the 

thin section. These images were collected and stitched together into one image. Figure 

4.51 shows the process of image collection and stitching into one image of a thin 

section. 
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Figure 4.51 Image acquisition and stitching processes on a full image of thin 

section of sandstone from Well B. Nine images were acquired (middle) by using the 

12.5 times magnification. The length of the image (right) after stitching is 2.8 cm. 

 

The nine images in the middle are the images taken from different parts of the thin 

section. The figure on the right side results from the stitching of the 9 images into a 

full thin section image with a length of 2.8 cm. 

4.8.2.2 Grain size vertical profile and building blocks of Well B sandstone 

The next step was to calculate the grain size vertical profile from a full thin section 

image of Well B. The spatial autocorrelation was calculated based on the intensities of 

the corresponding pixels of a full thin section image. From this, the coarsening and 

fining trends of the full thin section image could be determined. Figure 4.52 shows a 

grain size vertical profile calculated from a thin section of Well B in the Malay Basin.   
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Figure 4.52 Grain size vertical profile trends on a full thin section image of 

sandstone from Well B. The pink trends show the profile before smoothing and the 

blue trends show the profile after smoothing.   

 

The grain size vertical profile was calculated on a full thin section image of the 

rock from Well B. The coverage length of the grain size vertical profile was 2.1 cm. 

The actual length of the total image thin section image was 2.8 cm. The length was 

cut and reduced to 2.1 cm to create a full rectangular image.  

With this length, it was assumed that this profile had a similar scale with the core 

plug. The autocorrelation curve was computed for each row of pixels on a full thin 
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section image. The pink trends show the image statistical intensities value which were 

calculated from each pixel of the full thin section image. The blue trends show the 

reducing and smoothing of noise on the pink trends.  

The smoothing (blue) trends on a full thin section image showed the coarsening 

and fining part of the image. Based on the trends observed on the full thin section 

image, there were three areas where the trends bend. The trends which show bends to 

the right on the area a comprised the coarse and porous sand grains. Two areas with 

fine and tight grains were present (area c). Only one area b which comprised moderate 

grains was observed. The building blocks for upscaling permeability were created 

based on the classification of these areas. The length of each area was used as a 

fraction for upscaling input.  

4.8.2.3 Upscaling permeability workflow on thin section from Well B 

The building blocks were created based on the grain size vertical profile of the full 

thin section image of Well B. The length of a full thin section image was 2.1 cm and it 

was assumed that the anisotropy of core plug was covered and resolved through the 

grain size vertical profile on the full thin section image. 

To apply upscaling of permeability on the thin section there were three inputs of 

fraction length from the grain size vertical profile trends and permeability estimation 

from each block. The fraction length data for the full thin section image is shown in 

Figure 4.52. As shown in Figure 4.52, there are three areas: a, b and c which the 

trends were bending. The permeability at core plug scale size from each image 

representative building blocks was then estimated. 

A total of 24 images were collected. From these 24 images, three images which 

represented the a area, b area and c area were selected. The assumption was that a low 

variation occurred on the lateral side of the thin section. The 2D to 3D porous media 

reconstruction and fluid flow simulation were applied to estimate the permeability at 

pore scale from each image. Figure 4.53 shows the application of upscaling 

permeability on a full thin section image of the sandstone from Well B.  
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Figure 4.53 Building blocks for upscaling permeability workflow on a full thin 

section image of sandstone from Well B. The building blocks and fractions of 

heterogeneity are shown on the middle and the pore scale permeability estimations on 

each block of sandstone from Well B thin section are shown on the right.     

 

Based on the grain size vertical profile on the full thin section, the length fraction 

of porous area (la) was 0.5 cm. The length fraction of area b, (lb) was 0.4 cm. The 

length fraction of area c, (lc) was 0.9 and 0.3 cm. The building blocks were created 

based on the trends.  

Three images which represented the porous (a), patchy (b) and tight (c) areas were 

collected and processed. These images were used as inputs to estimate the 

permeability from each building block using 2D to 3D porous media reconstruction 
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and fluid flow simulation. The porosity and permeability estimated from each image 

is summarized in Table 4.7  

 

Table 4.7 Estimated porosity and permeability from each representative building 

block of thin section from Well B. 

Type Porosity (%) Permeability (mD) 

Porous / Coarse (a) 32.22 9921.39 

Patchy (b) 22.06 1950.55 

Tight / Fine (c) 15.15 843.81 

  

Upscaling permeability was used to estimate the effective permeability at 

laboratory scale (core plug scale). The resulting estimates of the upscaling porosity 

and permeability are summarized in Table 4.8.  

 

Table 4.8 Comparison of porosity and permeability obtained by upscaling 

permeability workflow on thin section and core plug measurement from Well B. 

Type Porosity (%) Permeability (mD) 

Core Plug 30.6 3700 

Upscaling (Kv) 22.5 715.3 

Upscaling (Kh) 22.5 3215.9 
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The porosity which was calculated using the arithmetic average from the three 

images was 22.5 % as compared to 30.6 % laboratory measurement. The estimated 

permeability using upscaling workflow was 715.3 mD when conducted normal to the 

thin section length (Kn) and 3215.9 mD when parallel to the thin section length (Kp).  

This estimation was compared with the laboratory results which were measured 

parallel to the thin section length. The permeability obrtained from PRSB laboratory 

was 3700 mD. There was no information on the bedding of the core plug. The 

accuracy of applying this workflow is about 86 % through comparison between Kp 

with the laboratory results. Figure 4.54 shows a plot of the resulting estimates of 

upscaling porosity and permeability. 

 

 

Figure 4.54 Sandstone from Well B permeability comparison: Estimated 

permeability of building blocks representative image (blue dots), upscaling 

permeability workflow (green line and green ellipse) and laboratory data (red line and 

red ellipse). The y axis has no unit.   
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Figure 4.54 shows a comparison of the permeability derived from upscaling 

workflow and direct core measurement. The blue dots represent the estimated pore 

scale permeability on each representative image of building block of the thin section. 

The red line is the permeability obtained from PRSB. The green line is the 

permeability obtained from a full thin section image by applying upscaling workflow. 

The green line and the blue dots were compared respective to measurement value. 

One of the pore scale permeability result was overestimated and the others were 

underestimated. It shows that permeability prediction on mm scale could not cover the 

heterogeneity at core plug scale. The accuracy of applying upscaling permeability 

workflow is about 86 % through comparison on Kp with the laboratory measurement. 

It shows that applying this workflow on a thin section could cover the heterogeneity at 

core plug scale and improved prediction of permeability at laboratory scale.  

4.8.3 Application of Upscaling Permeability Workflow to Well C Thin Section 

The third thin section studied was from the reservoir of Group J, in the Malay Basin. 

The data was also provided by PETRONAS Research Sdn. Bhd. (PRSB) from Well C 

at a depth of 1812.44 m. The rocks were deposited in a subtidal environment with 

moderate energy. The porosity and permeability of the core plugs are 24.3 % and 

287.6 mD respectively.  

Figure 4.55 shows a thin section from Well C. The full length of the thin section 

image is 2.8 cm. Since no information about bedding plane of the core plug was 

available, the workflow to obtain the full thin section image was applied normal to the 

length of the thin section. The purpose was to sample the longest length that was near 

or similar to the core plug scale. A low variation was assumed on the lateral of the 

thin section. 

 



 

136 

 

 

Figure 4.55 Thin section of sandstone from Well C. 

4.8.3.1 Full thin section image of sandstone from Well C 

To apply upscaling permeability workflow on the thin section, the first step was to 

acquire a full thin section image of the thin section. A full thin section image was 

captured using a microscope. Nine images were collected from different parts the thin 

section. These images were collected and stitched together into one full thin section 

image. Figure 4.56 shows the process of image collection and stitching into full thin 

section image.    
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Figure 4.56 Image acquisition and stitching processes on a full image of thin 

section of sandstone from Well C. Nine images were acquired (middle) by using the 

12.5 times magnification. The length of the image (right) after stitching processes is 

2.8 cm. 

 

The nine images in the middle are the images taken from different parts of the thin 

section. The figure on the right side shows the result of stitching the 9 to form a full 

thin section image of 2.8 cm length.   

4.8.3.2 Grain size vertical profile and building blocks of well C sandstone 

The next step is to calculate the grain size vertical profile from the full thin section 

image of Well C. The spatial autocorrelation was calculated based on the intensities of 

corresponding pixels of the full thin section image. From this the coarsening and 

fining trends of the full thin section image could be determined. Figure 4.57 shows the 

grain size vertical profile calculated from the thin section of Well C Malay basin.   
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The grain size vertical profile trends were calculated on the full thin section image 

of the Well C. The coverage length of the grain size vertical profile trends was 2.4 

cm. The actual length of the total image of the thin section was 2.8 cm, The length 

was cut and reduced to 2.4 cm to create a full rectangular image of the sandstone.  

With this length, it was assumed that this profile has a similar scale with the core 

plug. The autocorrelation curve was computed for each row of pixels on the full thin 

section image. The pink trend showed the image statistical intensity value which were 

calculated from each pixel of the full thin section image. The blue trends show the 

reducing and smoothing of noise on pink trends. 

The smoothing (blue) trends on a full thin section image of Well C sandstone 

showed the coarsening and fining part of the image. Based on the trends observed, 

there were two areas where the trends bend. Two areas denoted by the bends on the 

left on the area b had fine grains and were tight. Three sections on area a had coarse 

grains and were porous. The building blocks for the upscaling permeability workflow 

were created based on the classification of these areas. The length of each area was 

used as a fraction for upscaling input.  
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Figure 4.57 Grain size vertical profile trends on a full thin section image of 

sandstone from Well C. The pink trends show the profile before smoothing and the 

blue trends show the profile after smoothing.     

4.8.3.3 Upscaling permeability and building blocks on sandstone from Well C 

The building blocks were created based on the grain size vertical profile of the full 

thin section image. The length of the full thin section image was 2.4 cm and it was 

assumed that the anisotropy of the core plug was covered and resolved through the 

grain size vertical profile trends on the full image of the thin section. 
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To apply the upscaling of permeability workflow on the thin section there were 

two inputs, namely, fraction length from grain size vertical profile and the 

permeability estimated from each block. The fraction length data is shown in Figure 

4.57. As shown in Figure 4.57, there are two areas: a and b where the trends bend. 

The permeability at core plug scale size was estimated from each representative 

building block image. 

A total of 25 images were collected. From the 25 images, two images which 

represented the area a (porous and coarse grained) and area b (fine grained and tight) 

were selected The assumption was that low variation occurred on the lateral side of 

the thin section. The 2D to 3D porous media reconstruction and fluid flow simulation 

were applied to estimate the permeability at pore scale from each image. Figure 4.58 

shows application of upscaling permeability workflow on the full thin section image 

of sandstone from Well C. 
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Figure 4.58 Building blocks for upscaling permeability workflow on a full thin 

section image of sandstone from Well C. The building blocks and fractions of 

heterogeneity are shown on the middle and the pore scale permeability estimations on 

each block of sandstone from Well C thin section are shown on the right.    

 

Based on the grain size vertical profile on the full thin section, the length fraction 

of the porous area (la) was 0.3 and 0.65 cm. The length fraction of tight area, lb was 

0.45, 0.35 and 0.65 cm. Building blocks were created based on these trends. 

Two images which represented the porous area and tight areas were collected and 

processed. These images were used as an input to estimate the permeability from each 

building block using 2D to 3D porous media reconstruction and fluid flow simulation. 

The porosity and permeability estimated from each image are summarized in Table 

4.9. 
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Table 4.9 Porosity and permeability estimated from each representative building 

block of the thin section from Well C. 

Type Porosity (%) Permeability (mD) 

Porous / Coarse (a) 27.8 1213.7 

Tight / Fine (b) 14.9 181.8 

 

Upscaling permeability workflow was used to estimate the effective permeability 

at laboratory scale (core plug scale). The resulting estimates of upscaling porosity and 

permeability are summarized in Table 4.10.   

 

Table 4.10 Comparison of porosity and permeability obtained by upscaling 

permeability workflow on thin section and core plug measurement from Well C. 

Type Porosity (%) Permeability (mD) 

Core Plug 24.3 287.6 

Upscaling (Kn) 20.0 274.1 

Upscaling (Kp) 20.0 590.3 

 

The porosity which was calculated using the arithmetic average from the two 

images was 20 % as compared to 24.3 % from laboratory measurement. The 

estimated permeability using upscaling workflow was 274.1 mD when conducted 

normal to the thin section length (Kn) and 590.3 mD when parallel to the thin section 

length (Kp). 
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This estimation was compared with the laboratory results which were measured 

normal to the thin section length. The permeability obtained from PRSB laboratory 

was 287.6 mD. There was no information on the bedding of the core plug. The 

accuracy of applying this workflow is about 95 % through comparison between Kn 

with laboratory results. Figure 4.59 shows a plot of the resulting estimates of 

upscaling porosity and permeability. 

Figure 4.59 shows a comparison of the permeability derived from upscaling 

workflow and direct core measurement. The blue dots are the estimated pore scale 

permeability on each representative image of building block of the thin section. The 

red line is the permeability obtained from PRSB. The green line is the permeability 

obtained from a full thin section image by applying upscaling workflow. The green 

line and the blue dots were compared respective to measurement value to show the 

efficiency of upscaling workflow. 

 

 

Figure 4.59 Sandstone from Well C permeability comparison: Estimated 

permeability of building blocks representative image (blue dots), upscaling 

permeability workflow (green line and green ellipse) and laboratory data (red line and 

red ellipse). The y axis has no unit. 
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One of the pore scale permeability results was overestimated and another 

underestimated. It shows that permeability prediction on mm scale could not cover the 

heterogeneity at core plug scale. The accuracy of applying upscaling permeability 

workflow is about 95 % through comparison on Kn with laboratory measurement. It 

shows that applying this workflow on a thin section could cover the heterogeneity at 

core plug scale and improved the prediction of permeability at laboratory scale. 
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4.9 Discussion 

Measurement of permeability may be partially replaced by numerical simulation on a 

3D porous media of a rock. This porous media can be provided using CT-Scan. The 

numerical simulation can accurately simulate physical experiments if mimics are 

provided precisely. Since the physical measurement is conducted at core plug scale, 

rock digital sample at core plug scale is required as an input to conduct accurate 

numerical simulation of physical measurement. However, CT-Scan is still 

prohibitively expensive and the scanning time of large digital sample at core plug 

scale is too long to be practically useful in massive numerical experimentation. 

Another problem is that conducting simulation of fluid flow on this large digital scale 

can only be handled by a supercomputer and still requires hours or days to implement. 

CT-Scan is an expensive device, and as such 2D to 3D porous media 

reconstruction was used as an alternative to obtain 3D porous media of the rock. The 

methodology from Keehm was adopted and modified to reconstruct the porous media. 

The sample points as conditional data were added as a new parameter to effectively 

improve the computational reconstruction time. The results showed that the 

modification improved the computational reconstruction time by 30 times. The 

accuracy of this methodology was compared with CT-Scan data. Comparison with a 

CT-scan image of a sandstone showed that this methodology achieved an accuracy of 

about 80 – 90 %. This means that this method is accurate in the reconstruction of the 

porous media connectivity of sandstone.  

The task to generate 3D porous media and fluid flow simulation which can be 

handled by a standard personal computer and in real time can only be implemented at 

mm scale. This size sometimes cannot cover sample heterogeneity at laboratory scale 

(cm scale). In this work, the workflow to predict permeability at laboratory scale is 

presented. The upscaling method combined with 2D to 3D porous media 

reconstruction was applied. Grain size vertical profile trends were used to isolate 

variations on coarse and fine parts of the thin section. The building blocks of 

upscaling purpose were created based on these trends. Each image which represented 

the coarse and fine parts of the thin section was used as an input for 2D to 3D porous 

media reconstruction. The porosity and permeability were calculated from 3D porous 
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media and used as an input for upscaling. These workflows were applied to thin 

sections of the Berea sandstone and thin sections of sandstones from the Malay Basin. 

The results on the four thin sections showed good agreement with laboratory data. 

The accuracy of this workflow is about 85 - 90 % on each thin section compared to 

physical lab measurement. This workflow can be applied using a standard personal 

computer with reasonable running time (approximately 180 seconds). Table 4.11 

shows the comparison of running time between upscaling permeability workflow with 

core plug measurement. 

 

Table 4.11 Comparison of running time between upscaling permeability workflow 

with core plug measurement. 

 

Upscaling Permeability 

Workflow (cm scale) Core Plug 

Measurement 
(cm scale) 

2D to 3D 
Flow 

Sim. 
GSVP 

Running Time @ ~30 

sec @ ~30 sec @ < 1 

sec ~30 minutes – 1 hour 

Sub Total Time  

(3 image fraction) ~90 sec ~90 sec ~1 sec ---  

Total Time  ~ 180 sec  ~30 minutes – 1 hour  

*GSVP: Grain Size Vertical Profile 
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         CHAPTER 5 : CONCLU SIONS AND RE COMMENDATIONS 

CONCLUSIONS AND RECOMMENDATIONS 

5.  

  

5.1 Conclusions 

This thesis develops a new workflow to predict laboratory scale permeability using 

information from a full thin section image which can be applied in real time on a 

standard personal computer. Several methods are combined as part of the workflow: 

pore scale 3D porous media reconstruction using 2D to 3D, pore scale fluid flow 

simulation using LBM, grain size vertical profile calculation at core plug scale and 

upscaling permeability from pore to core plug scale. 

In Chapter 4, a 2D image was sampled and cut from a 3D CT-Scan and porous 

media reconstruction was applied on a selected 2D image. Based on comparison with 

the CT-Scan image of a sandstone, 2D to 3D porous media reconstruction using 

SISIM geostatistical method showed good agreement with the experimental (CT-

Scan) image. The accuracy of this method was tested by comparing absolute 

permeability calculated on generated 3D porous media and 3D CT-Scan Image. By 

comparison on the same scale (mm to mm) and applying the REV concept, an 

accuracy of about 80 - 90% was achieved, meaning that this method would still 

correctly simulate the connectivity of sandstone samples at pore (mm) scale. The 3D 

porous media reconstruction proposed in this thesis is in real time on a standard 

personal computer by modifying and adding sample points as new input parameter. 

This method improved the simulation by running 30 times faster than without 

conditional data (Keehm’s method) and 10 times faster than with conditional data 

using training image (2D image).  
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The variograms from the three different methodologies (without conditional data, 

with conditional data using training image and sample points) showed that the 

reconstructed images had the same spatial variability, which means the methodology 

becomes more efficient. The first objective of this study is fulfilled by completing this 

part of thesis. The writer developed and modified a workflow to reconstruct 3D 

porous media from thin section images. This method improved the computational 

time of reconstruction and it could be implemented in real time on a standard personal 

computer with good accuracy as compared to CT-Scan. 

Based on this study, resolution of the image gave a major impact on computed 

fluid flow. Decreased resolutions led to a decrease on the computed permeability. 

Decreased resolution gave an impact to the connectivity of porous media. Image 

resolution has not given a major impact on porosity. Reducing the size of 3D porous 

media to 50% of the original is a reasonable size for fluid flow simulation (Noted on 

Berea and S (8)).  

However, 3D porous media with a lower resolution (poor quality of image, as 

noted by Fontainebleau) will give a reasonable size less than 50%. Study on the 

impact of resolution gave a clear understanding about a minimal size input for fluid 

flow simulation. The computation time is related to the size of the input. 3D porous 

media with a big grid or size will affect the computational time. Several studies on 

fluid flow simulation on different types of size and resolution fulfilled the second 

objective of this study. 

The third objective was fulfilled by applying upscaling permeability workflow on 

thin sections of Berea Sandstone and from sandstones from the Malay Basin. The first 

input of this workflow is to obtain a full thin section image and then calculate the 

grain size vertical profile trends. The grain size vertical profile method on a full thin 

section image with appropriate resolution could be used to differentiate the 

heterogeneities parts of a full thin section image. With this information the building 

blocks input for upscaling can be determined. Based on the results, upscaling 

permeability workflow using a combination of reconstruction method, fluid flow 

simulation, grain size vertical profile and upscaling could be applied to accurately 

estimate the effective permeability at laboratory scale.  
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The accuracy of this method on thin section samples of sandstone is about 85 – 

90% and can be applied on a standard personal computer with reasonable running 

time (about 180 seconds). Over and underestimation from laboratory measurement 

could still occur if permeability was only estimated using 2D to 3D porous media 

reconstruction. Permeability anisotropy at laboratory scale could not be resolved since 

this method could only be implemented at mm scale. It clearly showed that the 

prediction of laboratory scale permeability is improved by applying upscaling 

permeability workflow.  

5.2 Recommendation  

In light of the findings and conclusions of this study, the author recommends the 

following: 

1. Once the workflow becomes user friendly, the available data from the thin 

section data base of sandstone can be used as an input and integrated into 

modeling processes as complimentary data and quality control to logs and 

seismic for permeability distribution information. 

2. For accurate sampling, spacing and to obtain good samples, the built drill bits 

could be used to take samples from each depth of the well accurately. 

3. Deducing a link between laboratory and borehole based NMR measurements 

for pore space and fluid characterization. 

4. Create porosity and permeability trends from thin sections or small cuttings. 

5. Adopting fast computational Multiple point statistics algorithm to reconstruct 

porous media. 

6. Numerical experiments with velocity on digital samples and assess 

permeability from well logging data if the velocity can be calculated on the 

same digital rocks. 

 

 



 

150 

 

 

REFERENCES 

 

[1] Dvorkin, J, Armbruster, M., Baldwin, C., Fang, Q., Derzhi, N., Gomez, C., Nur, 

B., Nur, A., and Mu, Y., “The future of rock physics: computational methods vs. 

lab. Testing,” EAGE First Break (26), 2008, pp. 63-68.  

[2] Nur, A., “The Emerging Roles of Rock Physics: From 4D Seismic To Pore Scale 

Imaging,” Latin American and Caribbean Petroleum Engineering Conference, 31 

May-3 June 2009, Cartagena de Indias, Colombia, 122944-MS, 2009. 

[3] Touati, M., Suicmez, S., Funk, J., Cinar, Y., Knackstedt, M., “Pore network 

modeling of saudi aramco rocks: a comparative study,” Society of Petroleum 

Engineers, 2009, pp. 1-13. 

[4] Hidajat, I., Rastogi, A., Singh, M. and Mohanty, K. K., “Transport properties of 

porous media from thin-sections”. SPE 69623, SPE LACPEC, March 25-27, 

2001.  

[5] Damiani M.C., Fernandes C.P., Bueno A.D., Santos L.O. E., Cunha Neto J.A.B., 

and Philippi P.C., “Predicting Physical Properties of Reservoir Rocks from the 

Microstructural Analysis of Petrographic Thin Sections,” Submitted to 

Produccion, 2000  

[6] Tolke, J., Baldwin, C., Mu, Y., Derzhi, N., Fang, Q., Grader, A and Dvorkin, J., 

“Computer Simulations of Fluid Flow in Sediment: From Images to 

Permeability” The Leading Edge, Jan, 2010, pp. 68-74. 

[7] Storer, S., ”Pore-scale modelling based on microscopic analysis of drill cuttings,” 

first break, vol. 27, July, 2009, pp. 77-83.  

 



 

151 

 

[8] Knackstedt, M. A., Arns, C. H., Limaye, A., Sakellariou, A., Senden, T. J., 

Sheppard, A. P., Sok, R. M., Pinczewski, W. V. and Bunn, G. F., “Digital Core 

Laboratory: Properties of Reservoir Core derived from 3D images,” SPE 87009, 

Kuala Lumpur, Malaysia, 2004.  

[9] Kameda, A., “Permeability evolution in sandstone: Digital rock approach,” Ph.D. 

Dissertation, Stanford University, 2005. 

[10] Kayser, A., Kellner, A.,  Holzapfel, H. W., Van der bilt, Warner, S., and Gras, 

R., “3D visualization of a rock sample, Rotliegend sandstone, Southern Permian 

Basin: applications for core analysis and petrophysics,” Petroleum Geology 

Conf. Series, vol. 6, 2005, pp. 1613-1620. 

[11] Marcke, P. V., Verleye, B., Carmeliet, J., Roose, D., and Swennen, R., ”An 

Improved Pore Network Model for the Computation of the Saturated 

Permeability of Porous Rock,” Transport in Porous Media, Vol.85, 2010, pp. 

2451-476. 

[12] Grader, A. S., Andrew, B.S., Al-Dayyani, T. and Nur, A.,” Computations of 

Porosity and Permeability of Sparic Carbonate Using Multi-Scale Ct Images,” 

Int. Sym. of the Soc. of Core Analysts, 2009. 

[13] Adler, P. M., Jacquin, C. G. and Quiblier, J. A., “Flow in simulated porous 

media”, Int. J. Multiphase Flow, 16, 1990, pp. 691-712. 

[14] Yeong, C. L. Y., and Torquato, S., “Reconstructing random media”, Phys. Rev. 

E, 57, 1998a, pp. 495–506. 

[15] Yeong, C. L. Y., and Torquato, S., 1998b, Reconstructing random media. II. 

Threedimensional media from two-dimensional cuts, Phys. Rev. E, 58, 224–233.  

http://pgc.lyellcollection.org/search?author1=A.+KAYSER&sortspec=date&submit=Submit
http://pgc.lyellcollection.org/search?author1=A.+KELLNER&sortspec=date&submit=Submit
http://pgc.lyellcollection.org/search?author1=H.-W.+HOLZAPFEL&sortspec=date&submit=Submit
http://pgc.lyellcollection.org/search?author1=G.+VAN+DER+BILT&sortspec=date&submit=Submit
http://pgc.lyellcollection.org/search?author1=S.+WARNER&sortspec=date&submit=Submit
http://pgc.lyellcollection.org/search?author1=R.+GRAS&sortspec=date&submit=Submit
http://www.springerlink.com/content/?Author=P.+Van+Marcke
http://www.springerlink.com/content/?Author=B.+Verleye
http://www.springerlink.com/content/?Author=J.+Carmeliet
http://www.springerlink.com/content/?Author=D.+Roose
http://www.springerlink.com/content/?Author=R.+Swennen
http://www.springerlink.com/content/0169-3913/
http://www.springerlink.com/content/0169-3913/85/2/
http://www.springerlink.com/content/0169-3913/85/2/


 

152 

 

[16] Mese, A., Tutuncu, A., Kameda, A., Nur, A., and Dvorkin, J., “Digital rock 

physics for sands and shales,” Oil & Gas Network, June, p. 68, 2004. 

[17] Keehm, Y., Mukerji, T., and Nur. A., “Computational rock physics at the pore 

scale: Transport properties and diagenesis in realistic pore geometries,” The 

Leading Edge, 20, 2001, pp. 180–183. 

[18] Bakke, S. and Øren, P. E., “3-D pore-scale modeling of sandstones and flow 

simulations in the pore networks,” SPEJ, 2, 136, 1997. 

[19] Mavko, G., and Nur, A., “The effect of a percolation threshold in the Kozeny- 

Carman relation”, Geophysics, 62, 1997, pp.1480–1482. 

[20] Walsh, J. B., and Brace, W. F., “The effect of pressure on porosity and transport 

properties of rock”, J. Geophy. Res., 89, 1984, pp. 9425–9431. 

[21] Dunsmuir, J. H., Ferguson, S. R., D'Amico, K. L. and Stokes, J. P., “X-ray 

microtomography. A new tool for the characterization of porous media,” Paper 

SPE22860 proceedings of SPE Annual Technical Conference and Exhibition 

held in Dallas, Texas, October 6-9, 1991, pp. 423-430.  

[22] Jasti, J. K., Jesion, G. and Feldkamp, L., “Microscopic imaging of porous media 

with X-ray computer tomography”, SPE Formation Evaluation, 8, 1993, pp.189-

193. 

[23] Coles, M. E., Hazlett, R. D., Muegge, E. L., Jones, K. W., Andrews, B., Dowd, 

B., Siddons, P., Peskin, A., Spanne, P. and Soll, W., “Developments in 

synchrotron X-ray microtomography with applications to flow in porous media,” 

SPE Reservoir Evaluation & Engineering, 1, 1998, pp.288-296. 

 



 

153 

 

[24] Okabe, H. and Blunt, M. J., “Pore Space Reconstruction Using Multiple-Point 

Statistics,” Journal of Petroleum Science and Engineering, 46, 2005, pp. 121–

137.  

[25] Tiab, D. and Donaldson, E., “Petrophysics: Theory and Practice of Measuring 

Reservoir Rock and Transport Properties,” Gulf Publishing Company, Houston, 

1996, 706pp. 

[26] Fens, T. W., “Petrophysical properties from small rock samples using image 

analysis techniques,” Ph.D. Dissertation, Delft, 2000. 

[27] Carman, P. C., “L’écoulement des Gaz á Travers les Milieux Poreux,” 

Bibliothéque des Sciences et Techniques Nucléaires, Presses Universitaires de 

France, Paris, 1961, 194pp. 

[28] Berryman, J. G. and Blair, S. C., “Kozeny-Carman relations and image 

processing methods for estimating Darcy’s constant”, J. Appl. Phys., 60, 1987, 

pp. 1930-1938. 

[29] Blair, S. C., Berge, P. A., and Berryman, J. G., “Two-point Correlation Functions 

to Characterize Microgeometry and Estimate Permeabilities of Synthetic and 

Natural Sandstones,” Lawrence Livermore National Laboratory Report, 

Livermore, 1993. 

[30] Schaap, M. G., and Lebron, I., “Using microscope observations of thin sections 

to estimate soil permeability with the Kozeny-Carman Equation,” J. Hydrol., 

251, 2001, pp. 186–201. 

[31] Torabi, A., Fossen, H., and Alaei, B., “Application of spatial correlation 

functions in permeability estimation of deformation bands in porous rocks,” J. 

Geophys. Res., 113, 2007 



 

154 

 

[32] Fauzi, U., “An Estimation of Rock Permeability and Its Anisotropy from Thin 

Sections Using a Renormalization Group Approach,” Energy Sources, Part A: 

Recovery, Utilization, and Environmental Effects, Vol 33, 6, 2011. 

[33] Dvorkin, J., “Kozeny-Carman Equation Revisited”, 2009, Notes from 

www.pangea.stanford.edu/~jack/  

[34] Fatt, I., “The network model of porous media: I. Capillary pressure 

characteristics,” Pet. Tran. AIME, 207, 1956, pp. 144-159.  

[35] Chatzis, I. and Dullien, F. A. L., “Dynamic immiscible displacement mechanisms 

in pore doublets: Theory versus experiment”, J. Colloid Interface Sci., 91, 1983, 

pp. 199-222. 

[36] Bryant, S. and M. Blunt, “Prediction of relative permeability in simple porous 

media,” Physical Review A, 1992, 46(4): p. 2004-2011. 

[37] Bryant, S.L., King, P.R. and Mellor, D.W., “Network model evaluation of 

permeability and spatial correlation in a real random sphere packing,” Transport 

in Porous Media, 1993. 11: p. 53-70.  

[38] Bryant, S.L., Mellor, D.W., and Cade, C.A., “Physically representative network 

models of transport in porous media,” AIChE Journal, 1993. 39(3): p. 387-396.  

[39] Lindquist, W. B., Lee, S. M., Coker, D. A., Jones, K. W. and Spanne, P., “Medial 

axis analysis of void structure in three-dimensional tomographic images of 

porous media,” Journal of Geophysical Research-Solid Earth, 101, 1996, pp. 

8297-8310. 

 

 

 

http://www.pangea.stanford.edu/~jack/


 

155 

 

[40] Lindquist, W. B. and Venkatarangan, A., “Investigating 3D geometry of porous 

media from high resolution images,” Physics and Chemistry of the Earth, Part A: 

Solid Earth and Geodesy, 24, 1999, pp. 593-599.  

[41] Lindquist, W. B., Venkatarangan, A., Dunsmuir, J. and Wong, T. F.,”Pore and 

throat size distributions measured from synchrotron X-ray tomographic images 

of Fontainebleau sandstones,” Journal of Geophysical Research: Solid Earth, 

105, 2000, pp. 21509-21527.  

[42] Silin, D.B., Guodong, J., and Patzek, T.W., “Robust determination of the pore 

space morphology in sedimentary rocks,” in SPE Paper 84296, Proceedings of 

the SPE Annual Technical Conference and Exhibition. 2003. Denver, Colorado.  

[43] Silin, D. and Patzek, T., “Pore Space Morphology Using Maximal Inscribed 

Spheres,” Physica A, 2006. 371: pp. 336 - 360.  

[44] Al-Kharusi, A.S. and Blunt, M.J., “Network Extraction from Sandstone and 

Carbonate Pore Space Images,” Journal of Petroleum Science and Engineering, 

2007. 56: pp. 219 - 231.  

[45] Dong, H., Touati, M., and Blunt, M.J., “Pore Network Modeling: Analysis of 

Pore Size Distribution of Arabian Core Samples,” In SPE Paper 105156, 

Proceedings of the 15th SPE Middle East Oil & Gas Show and Conference. 

2007. 11-14th March, Bahrain.  

[46] Hardy, J., de Pazzis, O. and Pomeau, Y., “Molecular dynamics of a classical 

lattice gas: Transport properties and time correlation functions,” Phys. Rev. A, 

13, 1976, pp.1949-1961.  

[47] Frisch, U., Hasslacher, B. and Pomeau, Y., “Lattice-gas automata for the Navier-

Stokes equation,” Phys. Rev. Lett., 56, 1986, pp.1505-1508.  



 

156 

 

[48] Gunstensen, A. K., Rothman, D. H., Zaleski, S. and Zanetti, G., “Lattice 

Boltzmann model of immiscible fluids,” Phys. Rev. A, 43, 1991, pp.4320-4327. 

[49] Rothman, D. H., “Cellular-automaton fluids: a model for flow in porous media,” 

Geophysics, 53, 1988, pp. 509-518.  

[50] Higuera, F., Succi, S. and Benzi, R., “Lattice gas dynamics with enhanced 

collisions,” Europhys. Lett., 9, 1989, pp. 345-349.  

[51] Bosl, W. J., Dvorkin, J., and Nur, A., “A numerical study of pore structure and 

permeability using a Lattice Boltzmann Simulation,” Geophy. Res. Lett., 25, 

1998, pp. 1475–1478.  

[52] Gunstensen, A. K. and Rothman D. H., “Lattice-Boltzmann studies of immiscible 

two-phase flow through porous media,” J. Geophy. Res., 98, 1993, pp. 6431-

6441.  

[53] Cancelliere, A., Chang, C., Foti, E., Rothman, D. H. and Succi, S., “The 

permeability of a random medium: comparison of simulation with theory,” Phys. 

Fluids A, 2, 1990, pp. 2085-2088. 

[54] Ladd, A. J. C., “Numerical simulations of particulate suspensions via a 

discretized Boltzmann equation: Part 1”. Theoretical foundation, J. Fluid. Mech., 

271, 1994, pp. 285–309.  

[55] Martys, N. S. and Chen, H., “Simulation of multicomponent fluids in complex 

threedimensional geometries by the lattice Boltzmann method,” Phys. Rev. E, 53, 

1996, pp. 743-750. 

 

 

 



 

157 

 

[56] Koponen, A., Kandhai, D., Hellén, E., Alava, A., Hoekstra, A. G., Kataja, M., 

Niskanen, K., Sloot, P. and Timonen, K., “Permeability of three-dimensional 

random fiber webs,” Phys. Rev. Lett., 80, 1998, pp. 716-719.  

[57] Ladd, A. J. C., “Numerical simulations of particulate suspensions via a 

discretized Boltzmann equation: Part 2. Numerical results,” J. Fluid. Mech., 271, 

1994, pp. 311–339.  

[58] Spaid, M. A. A., and Phelan, F. R., Jr., “Lattice Boltzmann methods for 

modelling microscale flow in fibrous porous media,” Phys. Fluids, 9, 1997, pp. 

2468–2474.  

[59] Fredrich, J. T., Noble, D. R., O'Connor, R. M., and Lindquist, W. B., 

“Development, Implementation, and Experimental Validation of the Lattice-

Boltzmann Method for Modeling Three-dimensional Complex Flows,” Sandia 

National Laboratory report SAND99-0369, Sandia National Laboratory, Sandia, 

1999. 

[60] Succi, S., “The Lattice Boltzmann Equation for Fluid Dynamics and Beyond,” 

Oxford University Press, New York, 2001, 304pp.  

[61] Arns, C.H, Knackstedt, M.A., Pinczewski, W.V., and Lindquist, W.B., “Accurate 

estimation of transport properties from microtomographic images,” Geophysical 

Research Letters, 28, 17, 2001, pp. 3361-3364. 

[62] Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T.J., Sheppard, 

A.P., Sok, R.M., Pinczewski, V., Bakke, S., Berge, L.I., and Øren, P.E., “Pore-

Scale Characterisation of Carbonates Using X-Ray Microtomography,” SPE 

Journal, 10(4), 2005, pp. 475 - 84. 

 



 

158 

 

[63] Riepe, L., Suhaimi, M. H. B., Kumar, M., Knackstedt, M. A., “Application of 

High Resolution Micro-CT Imaging and Pore Network Modeling (PNM) for the 

Petrophysical Characterization of Tight Gas Reservoirs - A Case History from a 

Deep Clastic Tight Gas Reservoir in Oman,” SPE Middle East Unconventional 

Gas Conference and Exhibition, 31 January-2 February, Muscat, Oman, 2011. 

[64] Riepe, L., “New Technologies for Petrophysics: Applications of Micro-CT 

Tomograms and Pore Network Modeling to Evaluate the Storage and Flow 

Capacity of Tight Gas and Basement Reservoirs,” Technical Talk, Kuala 

Lumpur, 21 April 2011. 

[65] Hilfer, R., and Manwart, C., “Permeability and conductivity for reconstructed 

models of porous media,”Phys. Rev. E, 64, 021304, 2001. 

[66] Manwart, C., Torquato, S., and Hilfer, R., “Stochastic reconstruction of 

sandstones,” Phys. Rev. E, 62, 2000, pp. 893–899. 

[67] Zhang, T., Lu, D. T., and Li, D. L., “A statistical information reconstruction 

method of images based on multiple-point geostatistics integrating soft data with 

hard data,” Proceedings of ISCSCT 2008, Shanghai, China, vol.1, Dec. 2008, 

pp.573-578. 

[68] Keehm, Y., Mukerji, T., and Nur, A., “Permeability prediction from thin 

sections: 3D reconstruction and Lattice-Boltzmann flow simulation,” 

Geophysical Research Letters, 31, L04606, 2004. 

[69] Keehm, Y., Sternlof, K. and Mukerji, T., “Computational estimation of 

compaction band permeability in sandstone,” Geosci. J., 10(4), 2006, pp. 499– 

505. 

 



 

159 

 

[70] Jin, G., Patzek, T. W. and Silin, D. B., “Physics-based Reconstruction of 

Sedimentary Rocks,” Proceedings of the SPE Western Regional / AAPG Pacific 

Section Joint Meeting, SPE 83587, Long Beach, California, 2003. 

[71] Richa, R., “Preservation of Transport Properties Trends: Computational Rock 

Physics Approach” Ph.D. Dissertation, Stanford University, 2010. 

[72] Dvorkin, J. and Nur, A., “Scale of experiment and rock physics trends,” The 

Leading Edge, 28(1), pp. 110–115, 2009. 

[73] Bear, J., “Dynamics of fluids in porous media,” American Elsevier. New York, 

NY, 1972.  

[74] Zhan, X., “Transport and Seismoelectric Properties of Porous Permeable Rock: 

Numerical Modeling and Laboratory Measurements,” Ph.D. Dissertation, 

Massachusetts Institute of Technology, 2010. 

 

[75] Remy, N., Boucher, A., and Wu, J.B., “Applied Geostatistics with SGeMS: A 

Users’ Guide,” Cambridge: Cambridge University Press, 2009. 

[76] Deutsch, C. V., and Journel, A.G., “GSLIB: Geostatical Software Library and 

User’s Guide”, Oxford University Press, New York, 369, 1998. 

[77] Weger, R. J., “Quantitative Pore/Rock Type Parameters in Carbonates and Their 

Relationship to Velocity Deviations,” Ph.D. Dissertation, University of Miami, 

2010.  

[78] Ramil, A., “Petrophysical Characterization and Permeability Upscaling of Fault 

Zones in Sandstone with A Focus on Slip Surfaces and Slip Bands” M.Sc. 

Thesis, Stanford University, 2006. 



 

160 

 

[79] Rubin, D. M., “A simple autocorrelation algorithm for determining grain size 

from digital images of sediment,” Journal of Sedimentary Research 74, 160–165. 

2004.  

[80] Warrick, J.A., Rubin, D.M., Ruggiero, P., Harney, J., Draut, A.E., and 

Buscombe, D., “Cobble Cam: Grain-size measurements of sand to boulder from 

digital photographs and autocorrelation analyses,” Earth Surface Processes and 

Landforms (34) pp. 1811-1821, 2009. 

[81] Deutsch, C. V., “Calculating effective absolute permeability in sandstone/shale 

sequences,” SPE Formation Evaluation, 9, 1989. 

[82] Weber, K. J. and Van Geuns, L.C., “Framework for constructing clastic reservoir 

simulation models”, J. Petroleum Technology, 10, 1248-1297, 1990. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

161 

 

PUBLICATIONS 

 

[1] Lubis, L.A. and Harith, Z.Z.T., “Study of Upscaling Permeability from Thin 

Sections using 3D Pore Space Image and Pore Network Modeling” paper 

presented at Petroleum Geology Conference and Exhibition (PGCE) 2011, Kuala 

Lumpur, Malaysia, 06-07 March 2011.  

[2] Lubis, L.A., Harith, Z.Z.T. and Noh, K.A.M., “Workflow to Reconstruct 3D Pore 

Space from 2D CT-Scan Image of Berea Sandstone” paper presented at National 

Geosciences Conference (NGC) 2011, Johor Bahru, Malaysia, 11-12 June 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

162 

 

IN PREPARATION PUBLICATIONS 

 

[1] Lubis, L.A., Harith, Z.Z.T., Khairy, H., Noh, K.A.M. and Salih, A.M., “A New 

Workflow to Predict Laboratory Scale Permeability of Sandstone using Thin 

Section Image Information” paper in preparation for Asian Journal of Earth 

Science, November 2011.  

[2] Lubis, L.A., Harith, Z.Z.T., Fauzi, U, Noh, K.A.M. and Khairy, H., “Pore Scale 

3D Porous Media Reconstruction Using Thin Section Images and Its Application 

to Predict Laboratory Scale Permeability” paper in preparation for Institute of 

Technology Bandung (ITB) Journal, November 2011. 

[3] Lubis, L.A., Harith, Z.Z.T., Khairy, H., Noh, K.A.M. and Salih, A.M., “Predicting 

Laboratory Scale Permeability on Berea Sandstone Thin Section using 3D Porous 

Media Reconstruction and Upscaling Method” paper in preparation for Petroleum 

Geosciences Conference and Exhibition (PGCE) 2012, Kuala Lumpur, Malaysia, 

April 2012. 

[4] Lubis, L.A., Harith, Z.Z.T., Noh, K.A.M. and Khairy, H., “Reconstruction of 3D 

Porous Media from 2D Image of Sandstone on Standard Personal Computer” 

paper in preparation for National Geosciences Conference (NGC) 2012, Malaysia, 

June 2012.  

[5] Lubis, L.A., Harith, Z.Z.T., Noh, K.A.M. and Khairy, H., “Application of 

Upscaling Permeability Workflow: Pore to Core Plug Scale on Malay Basin Thin 

Sections” paper in preparation for International Conference on Integrated 

Petroleum Engineering and Geosciences (ICIPEG), Kuala Lumpur, Malaysia, 12-

14 June 2012. 



 

163 

 

APPENDIX A 

 

Figure A.1 The REV graph for porosity on 3D CT-Scan of S (2) Sandstone. 

 

 

Figure A.2 Porosity fluctuations within the 3D CT-Scan of S (2) Sandstone sample. 

Arrow indicates the slice which was taken as training image. 
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Figure A.3 Horizontal and vertical TPCF graph from S (2) sandstone training image. 

 

 

Figure A.4 S (2) sandstone Training image on SGEMS user interface. 
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Figure A.5 Variogram calculated from training image from x and y direction. 

 

 

Figure A.6 Sample points extracted from S (2) sandstone training image. 
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Figure A.7 Cross sectional areas (x = 50, y = 50 and z = 50) of a reconstructed 3D 

porous media from 2D image of S (2) sandstone. 

  

 

Figure A.8 Variogram comparison between training image (2D image) and 

reconstructed 3D porous media. 
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Figure A.9 The REV graph for porosity on 3D CT-Scan of S (4) Sandstone. 

 

 

Figure A.10 Porosity fluctuations within the 3D CT-Scan of S (4) Sandstone sample. 

Arrow indicates the slice which was taken as training image. 
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Figure A.11 Horizontal and vertical TPCF graph from S (4) sandstone training image. 

 

 

Figure A.12 S (4) sandstone training image on SGEMS user interface. 
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Figure A.13 a) S (4) sandstone training image on SGEMS user interface, b) 

Variogram calculated from training image from x and y direction. 

 

 

Figure A.14 Sample points extracted from S (4) sandstone training image. 
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Figure A.15 Cross sectional areas (x = 50, y = 50 and z = 50) of a reconstructed 3D 

porous media from 2D image of S (4) sandstone. 

 

 

Figure A.16 Variogram comparison between training image (2D image) and 

reconstructed 3D porous media. 
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Figure A.17 The REV graph for porosity on 3D CT-Scan of S (5) Sandstone. 

 

 

Figure A.18 Porosity fluctuations within the 3D CT-Scan of S (5) Sandstone sample. 

Arrow indicates the slice which was taken as training image. 
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Figure A.19 Horizontal and vertical TPCF graph from S (5) sandstone training image. 

 

 

Figure A.20 S (5) sandstone Training image on SGEMS user interface. 
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Figure A.21 Variogram calculated from training image from x and y direction. 

 

 

Figure A.22 Sample points extracted from S (5) sandstone training image. 
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Figure A.23 Cross sectional areas (x = 50, y = 50 and z = 50) of a reconstructed 3D 

porous media from 2D image of S (5) sandstone. 

  

 

Figure A.24 Variogram comparison between training image (2D image) and 

reconstructed 3D porous media. 
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APPENDIX B 

 

 

Figure B.1 Steps for image processing and segmentation on selected image (a) from 

35 images of Berea sandstone thin section.  

 

 

Figure B.2 Steps for image processing and segmentation on selected image (b) from 

35 images of Berea sandstone thin section. 
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Figure B.3 Steps for image processing and segmentation on selected image (c) from 

35 images of Berea sandstone thin section.  

 

 

Figure B.4 Steps for image processing and segmentation on selected image (a) from 

30 images of Well A sandstone thin section. 
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Figure B.5 Steps for image processing and segmentation on selected image (b) from 

30 images of Well A sandstone thin section. 

 

 

Figure B.6 Steps for image processing and segmentation on selected image (a) from 

24 images of Well B sandstone thin section. 
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Figure B.7 Steps for image processing and segmentation on selected image (b) from 

24 images of Well B sandstone thin section.  

 

 

Figure B.8 Steps for image processing and segmentation on selected image (c) from 

24 images of Well B sandstone thin section.  
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Figure B.9 Steps for image processing and segmentation on selected image (a) from 

25 images of Well C sandstone thin section. 

 

 

Figure B.10 Steps for image processing and segmentation on selected image (b) from 

25 images of Well C sandstone thin section. 
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