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Abstract 
This paper, precisely, evaluates two famous below bubble 
point viscosity correlations and tries to create a new Neural 
Network model for estimating this property. The new created 
model outperforms the two investigated correlations namely 
Khan Model (1987) and Labedi Model (1992). The new 
technique (Artificial neural network) found to be successful in 
developing a model for predicting viscosity below bubble 
point with an outstanding correlation coefficient of 99.3%. A 
limited number of data points have been collected from 
Pakistani fields in order to construct, test, and validate the 
model. Viscosity from 99 sets of differential liberation data 
covering a wide range of pressure, temperature, and oil density 
were used to validate the correlations and to develop the new 
model. A series of statistical and graphical analysis were 
conducted also to show the superiority of the model that has 
been formulated through an Artificial Neural Network 
technique. A thorough literature review is also made to check 
the applicability of the existing correlations and their 
drawbacks. 
 
Introduction 
The main objective of this paper is to propose a simple 
procedure to predict black oil viscosity at the region below 
bubble point pressure as a function of easily determined 
physical properties. Based on thorough and critical literature 
survey of available technical and published papers, only two 
models that dealt with viscosity below bubble point were 
chosen; Khan et al model (1987) (1) and Labedi model (1992) 
(2).  
Utilizing Matlab statistical toolbox, programs have been 
generated using regression analysis for both correlations. 
Neural Network toolbox was used for creation of a new 
successful model. Back propagation/feed forward scheme has 

been followed to generate a model. Statistical analysis was 
used to test the validity of the new model.  
Viscosity is the measure of the resistance to flow exerted by a 
fluid; the lower the viscosity of a fluid, the more easily it 
flows. Like other fluid properties viscosity is mainly affected 
by temperature and pressure. An increase in temperature 
causes a decrease in viscosity. A decrease in pressure causes a 
decrease in viscosity, provided that the only effect of pressure 
is to compress the liquid. In addition, in the case of reservoir 
liquids, there is a third parameter which affects viscosity, 
which is the reduction in the amount of gas in solution in the 
liquid. It causes a decrease in viscosity; hence, the amount of 
gas in solution is a direct function of pressure. 
However, as reservoir pressure reduces below the bubble 
point, the liquid undergoes a change in composition. The gas 
that evolves takes the smaller molecules from the liquid, 
leaving the remaining reservoir liquid with relatively more 
molecules with large complex shapes. This changing liquid 
composition causes large increase in viscosity of the oil in the 
reservoir as pressure decreases below the bubble point (as 
illustrated in Figure (1). Crude oil viscosity is needed in 
reservoir engineering as well as many petroleum applications 
such as calculation of two-phase flow, gas-liquid flowing 
pressure traverse, gas-lift and pipeline design, calculation of 
oil recovery either from natural depletion or from recovery 
techniques such as waterflooding and gas-injection processes. 
Besides, these correlations are also needed for the calculation 
of multiphase flowing pressure gradients in pipes at different 
temperature and pressures. Live oil viscosity is a strong 
function of pressure, temperature, oil gravity, gas gravity, gas 
solubility, molecular sizes, and composition of the oil mixture. 
The variation of viscosity with molecular structure is not well 
known due to the complexity of crude oil systems. It is not a 
quite trusted procedure to estimate viscosity depending on the 
crude oil composition. 
When it is hardly to be measured in the laboratory, viscosity 
might need to be specified with high degree of accuracy in 
order to be involved in a series of highly sensitive 
calculations. The ordinary way to measure viscosity is 
definitely through laboratory equipment. The alternative way 
is through empirical correlations in case of lack of PVT 
information, which were found to be easily applied if they 
gained a wider range of confidence in industry.  
This study was particularly conducted to provide a quick 
estimate of the viscosity below bubble point pressure that is 
needed in the case of lack of laboratory equipment. Artificial 
Neural Network technique is used in this study to successfully 
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generate a model that predicts viscosity below bubble point 
pressure with high degree of confidence and precision. 
 
Below Bubble Point Viscosity Correlations 
Two viscosity-correlation methods have been proposed for the 
region below bubble point pressure. Unfortunately, both 
correlations failed to get wide popularity in industry. Crude oil 
has no definite and stable composition. For that reason, many 
viscosity estimation methods are geographically dependent. 
Correlation methods can be categorized either as a black-oil 
basis or as compositional basis. Black-oil type correlations 
predict viscosities from available field-measured variables by 
fitting of an empirical equation. Fortunately, both available 
correlations were black oil basis. The correlating variables are 
combination of reservoir pressure, bubble point pressure, oil 
API gravity, viscosity at the bubble point pressure. The 
formula of each correlation and the original and modified 
correlation parameters are provided in table (1& 2) at 
Appendix A. 
Khan et al. Model (1987) was based on 75 bottomhole 
samples that have been collected from 62 Saudi Arabian 
fields. A total number of 1691 data points were used to 
develop his model for viscosity below bubble point pressure. 
An average absolute percent error was 5.175 while the 
standard deviation was 7.201 and finally, the correlation 
coefficient was 0.994. 
Labedi Model (1992) was based on a PVT data contain about 
80 oil samples data. In his study, an average absolute percent 
error was 3.5 while the standard deviation was 28.78. 
Multiple-regression also used to develop the equation. 

 
Artificial Neural Network Model 
This new computing technique can be defined as massively 
and highly parallel distributed information processing system 
that has the ability for recognizing nonlinear relationships 
within the available data. Neural network resembles the 
human brain in its function where knowledge is acquired 
through a learning process; and interneuron connection 
strengths known as synaptic weights are used to store the 
knowledge (3). Feed forward/back-propagation paradigm (One 
of the most commonly used supervised training algorithm) has 
been followed to train the network. In this scheme, the Neural 
Network model is provided with the desired or target response 
vector in order to allow for mapping the relationship between 
available variable. It is a gradient based optimization 
procedure. In this scheme, the network learns a predefined set 
of input-output sample pairs by using a two-phase propagate-
adapt cycle. The scheme starts by assuming initial random 
weights for each neuron. In the feed forward stage, the input 
values are transformed to the output values through an 
activation function.  Output is compared with the desired 
output, and the error is propagated backward (back-
propagation stage) through the network.  
During this process, weights of the connections between 
neurons are adjusted. . However, each unit in the hidden layer 
receives only a portion of the total error signal, based roughly 
on the relative contribution the unit made to the original 
output. This process repeats layer by layer, until each node in 
the network has received an error signal that describes its 
relative contribution to the total error. Process is then 

continued in an iterative, parallel manner. The network 
converges when its output is within acceptable proximity of 
the desired output. After the weights are adjusted perfectly for 
training, they will be fixed for testing and feed forward 
scheme will be followed. Many complex petroleum 
engineering problems have been solved successfully through 
this technique. Numerous authors discussed the applications of 
neural network in petroleum engineering (4-10). None of them 
has tried to model the relationship between viscosity below 
bubble point pressure and the properties involved in.  
The developed model used two hidden layers neural network 
to model this property. Figure (2) shows that the viscosity 
below bubble point pressure model had eight neurons in the 
first layer and another eight neurons in the second. A total 
number of 99 data sets from the Pakistani fields were collected 
for this purpose. Almost, half of this data set was used to train 
the model. One quarter was used to cross validate it and 
another one quarter for testing the performance of the 
network. The data ranges for each set are presented in table (1) 
at Appendix A. The data used for testing the model have never 
seen by the network. The results showed significant 
improvement over the conventional correlation methods with 
reduction in the average absolute error for the viscosity below 
bubble point pressure. 
 
Error Analysis 
Error analysis was performed to check for studied correlations 
plus the new developed model in order to evaluate the 
suitability, accuracy and for comparison studies. Both 
graphical and statistical error analysis were utilized 
simultaneously. 
 

Statistical Error Analysis.This error analysis is utilized to 
check mathematically for how far and good models are. The 
statistical parameters used for comparison are: average percent 
relative error, average absolute percent relative error, mini-
mum and maximum absolute percent error, root mean square 
error, standard deviation of error, and the correlation coeffi-
cient.  Equations for those parameters are given below.  

 
1. Average Percent Relative Error (APE). It measures of 

relative deviation from the experimental data, defined by: 
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2. Average Absolute Percent Relative Error (AAPE). It 

measures the relative absolute deviation from the experimental 
values, defined by: 
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(This will be considered as the main criterion in statistical 

error analysis throughout this study). 
 
 
3. Minimum Absolute Percent Relative Error. 
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4. Maximum Absolute Percent Relative Error. 
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5. Root Mean Square Error. It measures the data 
dispersion around zero deviation, defined by: 
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6. Standard Deviation. It is a measure of dispersion and is 

expressed as: 
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Where (m-n-1) are the degrees of freedom in multiple- 
regression. A lower value of standard deviation indicates a 
smaller degree of scatter. 
 

7. The Correlation Coefficient. It represents the degree of 
success in reducing the standard deviation by regression 
analysis, defined by: 
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‘R’ values range between 0 & 1. The closer value to 1 
represents perfect correlation whereas 0 indicates no 
correlation at all among the independent variables. 
 

Graphical Error Analysis. Graphical tools aids visualizing 
the performance and accuracy of a correlation. Two graphical 
analysis techniques are employed; those are crossplots and 
error distribution that presented as follows: 

Error Distributions. Figures (5-9) show the error 
distribution around the zero line to assure that the models have 
an error trend or not. Fortunately, none of them show this 
phenomenon. Figures (5-7) show the error distribution for the 
new model (this study) separately (for training, validation, and 
testing sets). A range of -0.02 to 0.021 is achieved for 
validation set. Whereas a range of -0.032 to 0.018 is found out 
by testing set. These two ranges are shown to be minimal 
compared to the ones that found for both investigated Khan et 
al and Labedi correlations (from -0.07 to 0.15 & from -0.38 to 
0.58), respectively. The relative frequency of deviations 
between estimated and actual values are depicted in figures 10 
through 14 for training, validation, testing sets (this study), 
and for both Khan et al and Labedi models. Normal 
distribution curves are fitted to each one of them. An error 
range of -4% to 6% for viscosity below bubble point (testing 
set) while a range of  -5% to 14% & -5% to 15% is used for 
Khan et al and Labedi models, respectively. All models show, 
fairly, normal error distribution with mean equal to zero. 
Comparisons between average absolute percent error and the 
correlation coefficients are provided in figures 20 & 21. 
 

Crossplots. In this technique, all estimated values are 
plotted against the observed values and thus a crossplot is 
formed. A 45° straight line between the estimated versus 
actual data points is drawn on the crossplot which indicates 
the perfect correlation line. The closer the plotted data points 
to this line, the better the correlation. 

Figures 15 through 19 present crossplot for oil viscosity 
below the bubble point. The new model gives very close 
values to the perfect correlation line in all data points.  

Statistical comparison between the three models is 
presented in table (4), Appendix A. 
 
Conclusion 
 
This study leads to the following conclusions 

 
• Artificial neural network was found to be successful 

in developing a model for predicting viscosity below 
bubble point with an outstanding correlation 
coefficient reaches 99.3%. 

 
• The new model outperforms Khan et al and Labedi 

Models for predicting viscosity below bubble point. 
 

• The few number of data points that were used may 
weaken the new model. More data points with wider 
range of variable are needed to verify this study. 

 
• The original correlation coefficients of both 

correlations are shown to be less in this study because 
of the limited number of data and low range of 
variable used. 
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Nomenclature 
API =  Oil gravity, oAPI 
P =  Pressure 
Pb =  Bubble point pressure, psia 
Rs =   Solution gas oil ratio, Scf/Stb 
T =  Temperature, 0F 

gγ =         Gas relative density at 14.7 psia & 60 0F 

obμ =   Oil viscosity at bubble point, cp 

bμ =   Oil viscosity below bubble point, cp 
Bob =  Bubble point formation volume factor, RB/STB 
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Figure (1): Viscosity Regions at Constant Temperature 
 

 
 
Figure (2): Below Bubble Point Viscosity Neural Network 
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Figure (3): Training Of the Network  

 
 
Figure (4): Errors vs. Training, Validation, and Test Progress  
 

 
 
Figure (5): Errors Trend for Training Set (This Study) 
 

 
 
Figure (6): Errors Trend for Validation Set (This Study) 
 

 
 
 
Figure (7): Errors Trend for Testing Set (This Study) 

 
Figure (8): Errors Trend for Khan et al Model (1987) 
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Figure (9): Errors Trend for Labedi Model (1992) 

 
 

Figure (10): Histogram Errors for Training Set (This Study)  

 
Figure (11): Histogram Errors for Validation Set (This Study) 

 
 
Figure (12): Histogram Errors for Testing Set (This Study) 

 
 
Figure (13): Histogram Errors of Khan Model Errors (1987) 
 
 

 
 
Figure (14): Histogram Errors of Labedi Model Errors (1992) 
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Figure (15): Crossplot between Estimated and Actual Viscosity  
Values for Training Set (This Study). 
 

 
 
Figure (16): Crossplot between Estimated and Actual Viscosity 
Values for Validation Set (This Study). 

 
 
Figure (17): Crossplot between Estimated and Actual Viscosity 
Values for Testing Set (This Study). 
 

 
 
Figure (18): Crossplot between Estimated and Actual Viscosity  
Values for Khan et al Model (1987) 

 
 
Figure (19): Crossplot between Estimated and Actual Viscosity 
Values for Labedi Model (1992) 
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Figure (20): Comparison of Correlation Coefficients for all models 
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Figure (21): Comparison of AAPE for all models 
 
 
Appendix A 
 

TRAINING DATA TESTING DATA VALIDATION DATA 
PROPERTY 

MIN MAX AVEG STD MIN MAX AVEG STD MIN MAX AVEG STD 

Pressure 95 2615 865.57 602.40 115 3015 929.129 745.2636 152 4115 1217.71 1120.486 

Temperature 188 296 240.95 27.83 188 296 243.8387 25.32337 188 296 241 31.53199 

Bubble 
Point Pres-
sure 

1226 4975 1907.39 793.25 1226 4975 2042.097 1097.326 1226 4975 2399 1302.18 

Formation 
Volume 
Factor 

1.349 2.713 1.7033 0.405 1.349 2.713 1.744419 0.442845 1.349 2.713 1.857581 0.517117 

Solution 
GOR 357 2496 884.95 570.9615 357 2496 962.2581 694.0015 357 2496 1169.484 828.4798 

Gas Specific 
Gravity 0.825 1.643 1.367 0.1679 0.825 1.6433 1.343297 0.203474 0.8253 1.6433 1.281277 0.224333 

API Gravity 29 43.8 39.14 3.4394 29 43.8 38.95161 3.270461 29 43.8 38.27419 3.714563 

Below Bub-
ble Point 
Viscosity 

0.232 0.587 0.362 0.0764 0.243 0.486 0.364935 0.076863 0.23 0.636 0.357161 0.091215 

 
Table (1): Neural Network Data 
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Correlation coefficients Original This study 
a1 -0.14 -0.065001 

a2 -0.00025 -0.00012738 

 

Table (2): Khan Model Parameters 
 
Labedi model (1992) 

[ ]b
b

ob PPm −−= 1μ
μ  

 

Where 

bPaAPIaam lnlnln 321 ++=  

Correlation coefficients Original This study 

a1 -8.9248198 -1.6637 

A2 1.1302 -1.3485 

A3 -0.45577 -0.27628 

 

Table (3): Labedi model Parameters 
 

Correlation  AAPE APE Emin% Emax
 % STD RMSE R 

Khan model 3.2341 -0.22251 0.2314 14.126 4.4487 4.3566 0.9660 

Labedi model 3.0951 0.82386 0.077665 14.938 4.4991 4.4766 0.9662 

Neural network model (testing data) 1.1709 0.23305 0.069193 6.0336 1.8357 1.8104 0.9931 

Neural network model (validation data) 2.1208 -0.02206 0.075485 5.292 2.3599 2.4605 0.9924 

Neural network model (training data) 0.03376 0.00076 4.695e-06 0.17667 0.03419 0.04991 1.000 

 

Table (4): Statistical Comparisons for Below Bubble Point Viscosity Correlations and the Proposed ANN model 
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property 
bμ  P T Pb Bob Rs 

gγ  bias output 

Node - 1 0.20957 0.94959 -0.5446 -1.0742 1.6821 2.2072 -0.09076 -3.2019 -2.3655 

Node - 2 -0.33187 0.43809 0.030438 0.56966 -0.90794 2.6248 5.4988 -0.52393 4.484 

Node - 3 -0.31451 1.6082 0.8061 1.6178 3.3735 1.4572 -2.8999 -1.5637 -1.0178 

Node - 4 2.5802 0.66711 -0.84062 0.47562 -0.63571 -1.55 0.48846 0.25026 3.6956 

Node - 5 -1.2724 0.56519 -0.93077 -0.54185 -0.40433 -0.65949 -0.05876 1.1771 1.1075 

Node - 6 1.8247 0.015754 -0.47586 -0.21929 0.93237 1.1851 1.0166 4.401 3.873 

Node - 7 -0.23554 -4.7537 -0.56959 0.47377 -0.65576 0.36129 1.7367 4.401 -1.5809 

Node - 8 0.23545 -0.98501 0.89862 0.96486 1.0095 -0.3668 -0.15297 3.4172 0.09225 

        Bias  = 1.7228 

 

Table (5): Neural Network Weights for the Input/Hidden and Hidden/Output plus the Output Bias Vector 
 

  
 


