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Abstract: This study aims at generating and validating a universal pressure drop model at pipelines under three-
phase flow conditions. There is a pressing need for estimating the pressure drop in pipeline systems using a simple 
procedure that would eliminate the tedious and yet the non accurate and cumbersome methods. In this study resilient 
back-propagation Artificial Neural Network technique will be utilized as a powerful modeling tool to establish the 
complex relationship between input parameters and the pressure drop in pipeline systems under wide range of angles 
of inclination. A total number of data points consists of 335 sets has been used for generating, validating, and testing 
the ANN model. A model performance has been evaluated against the best empirical correlations and mechanistic 
models (Xiao et al., Gomez et al., and Beggs and Brill). A series of statistical and graphical analysis were conducted 
to show the significance of the generated model. The new developed model outperforms all investigated models 
with correlation coefficient reaches 98.82%. 
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1. INTRODUCTION 
 
Two phase flow; namely liquid and gas, or what is 
alternatively called Multiphase flow, occurs in almost all oil 
production wells, in many gas production wells, in some 
types of injection wells, and in pipelines with different 
configurations. Multiphase flow mixture can be convoyed 
horizontally, vertically, or at any angle of inclination. 
However, defining the pressure profile as a general case for 
all these configurations has some limitations in relation to 
changing liquid hold-up and flow patterns, slippage criterion, 
and friction factor determination. Velocity profile of each 
phase is hard to be determined inside the pipe facility. The 
pressure drop (DP) mainly resides between well head and 
separator facility. 
 
This pressure drop needs to be estimated with a high degree 
of precision in order to execute certain design considerations. 
Such considerations include tube sizing, operating wellhead 
pressure in a flowing well, direct input for surface flow line 
and equipment design calculations. Determination of pressure 
drop is very essential because it provides the designer with 
the suitable and applicable pump type for a given set of 
operational parameters. In addition, it can be used as a 
guideline for the operational cost estimation in terms of 
pipeline sizing. Generally, the proper estimation of pressure 
drop in pipeline can help in the design of gas-liquid 
transportation systems. 

A thorough literature survey has been done in the area of 
pressure drop estimation in multiphase system. Current 
empirical correlations and mechanistic models were reviewed 
and their drawbacks have been stated [1]. A critical and 
thorough literature survey of available technical and 
published papers has resulted in many models used for 
estimating pressure drop in pipelines. However, few of them 
are designed to estimate the pressure drop at all angles of 
inclination. Only the best models will be selected to compare 
their performances against the new developed model. Beggs 
and Brill Model [2] was derived from a huge number of 
database (584 data points) but in a small scale test facility 
where air and water were used as testing fluids using 1 inch 
and 1.5 inches diameter pipes. The model was made to serve 
for all angles of inclination ranging from -90 to 900.  The 
factors used for correlating are gas flow rate, liquid flow rate, 
pipe diameter, inclination angle, liquid holdup, pressure 
gradient and horizontal flow regime (segregated, intermittent 
and distributed). 
 
A study conducted in Kuparuk field indicated that Begs & 
Brill predict pressure drop with 10% accuracy for all 
production pipelines, [3]. While a recent study showed that 
Beggs and Brill correlation always over predicts pressure 
gradients, [4]. Yuan and Zhou conducted a comparative study 
for many pressure prediction correlations and mechanistic 
models that are widely used by the industry utilizing 
experimental data with seven angles of inclination. However, 
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the authors claimed that their study can be used as a guideline 
for selecting two-phase flow pressure drop prediction 
correlation and mechanistic model in designing and analyzing 
downward two-phase flow pipelines. 
 
Xiao et al. Model [5] is a comprehensive mechanistic model 
designed for gas-liquid two phase flow in horizontal and near 
horizontal pipelines. Among its numerous benefits, the model 
can predict the pressure drop in pipeline with high degree of 
accuracy compared to other tested correlations and models. 
The model performance has been evaluated against the data 
bank collected from the A.G.A database and laboratory data 
published in literature. Begs and Brill correlation was found 
to perform the best over three tested models named Dukler et 
al., Dukler-Eaton, and Mukherjee and Brill [5]. 
 
The mechanistic model developed by Xiao et al. [5] has been 
used as a base for another model expanded by Manabe et al. 
[6]. An experimental program was set up to cover all the flow 
patterns. Three models were used for testing the mechanistic 
model performance. Beggs and Brill correlation ranked 
second after Dukler et al model. However, Mukherjee and 
Brill model proved to be the least accurate among the tested 
models.  
 
Gomez et al. [7] presented a comprehensive model for 
prediction of flow pattern, liquid holdup and pressure drop in 
wellbores and pipelines. The model is valid for inclination 
angles range from horizontal to upward vertical flow. The 
model has been validated using laboratory and field data. 
Furthermore, the model has been tested against field data, 
from the North Sea and Prudhoe Bay, Alaska. The model’s 
pressure drop performance also has been compared to other 
six models and showed significant results. 
 
Petalas and Aziz, [8] developed a comprehensive mechanistic 
model using a large set of data from Stanford Multiphase 
Database. Their model was able to identify flow regimes 
based on certain assumptions. Additionally, it is applicable to 
a wide range of fluid properties and pipe geometries. The 
model also incorporated roughness effects as well as liquid 
entrainment, which were not considered by previous models. 
The authors finalized their effort by making the model able to 
calculate the pressure drop at any flow pattern and to 
calculate the liquid volume fraction efficiently. Hong and 
Zhou [9] presented a comprehensive review of the 
applicability of some empirical and mechanistic models using 
commercial software. Data from published work have been 
used for this purpose. Five empirical correlations and a single 
mechanistic model were chosen by the authors to compare 
their model’s performance; those are Beggs-Brill, Dukler-
Eaton-Flanigan, Dukler-Flanigan, Dukler, Eaton, and Eaton-
Flanigan correlations and Xiao et al mechanistic model. The 
authors concluded that Beggs-Brill correlation always 
overestimates the pressure gradient in all studied cases. 
However, for small pipe diameter with superficial-liquid 
velocities greater than 3 ft/sec the authors noticed that Dukler 
behaves the best, followed by Xiao and Eaton and Flangian. 
Moreover, at Superficial Liquid Velocities less than 3 ft/sec, 
they reported that Xiao behaves the best, followed by Eaton 

and  Flangian and Eaton. Finally, for a pipeline with 2-inches 
in diameter the authors concluded that Xiao model was the 
best, followed by Eaton. 
 
The overall objective of this study is to minimize the 
uncertainty in the multi-phase pipeline design. This is 
achieved by developing a representative model for pressure 
drop determination in downstream facilities with the use of 
the most relevant input variables and a wide range of angles 
of inclination. Specific objective is: 

− To construct and test two models for predicting 
pressure drop in pipeline systems under multiphase 
flow conditions with real field data for a wide range of 
angles of inclination (from -520 to 2080) using 
Artificial Neural Networks techniques. 

 
2. METHODOLOGY 
 
The methodology involves filling the gap does exist in the 
literature by assessing and evaluating the best multiphase 
flow (MPF) empirical correlations and mechanistic models. 
The assessment will be dealing with their performance in 
estimating pressure drop whilst using available statistical and 
graphical techniques. The performance of the proposed 
model will be compared to the best available correlations 
used in the industry. Fig. 1 illustrates the sequence of 
research events. 
 
Data collection and partitioning, filtering and screening 
procedure, data randomization, pre-processing, and post-
processing were all done before running the models. A total 
number of 338 data sets have been utilized for the purpose of 
this study for modeling ends (range of collected data has been 
presented in Appendix B). Only three data sets have been 
removed as outliers according to the semi-studentised 
residual or (standard residual). 

MSE
ee i

i =
*

 (1) 

where; i
*
e  is the semi-studentised residual (or standard 

residual);  
MSE is the mean square error of the data; ie  is the residual 
(difference between actual and predicted values). 
Relevant input variables were selected based on the most 
commonly used empirical correlations and mechanistic 
models in the industry.  
Eight attributes are thought to have a strong impact on the 
pressure drop estimation, which are; oil rate, water rate, gas 
rate, diameter of the pipe, length of pipe, wellhead pressure, 
wellhead temperature, and angle of deviation. Oil viscosity 
and density were found ineffective due to low range of data 
used. However, the model accuracy and consistency have not 
been affected. The data have been partitioned into three sets; 
training, validation, and testing.  
 
By definition, the training set is used to develop and adjust 
the weights in a network. The validation set is used to ensure 
the generalization of the developed network during the 
training phase, and the test set is used to examine the final  
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Fig. 1. Detailed research methodology of the current study 
 
performance of the network. The primary concerns should be 
to ensure two things: (a) the training set contains enough 
data, and suitable data distributed evenly to cover the entire 
range of data, and (b) there is no unnecessary similarity 
between the data in different sets [11]. 
 
With respect to ANN model, different partitioning ratios have 
been tested before finally selecting one for the specific model 
(2:1:1, 3:1:1, and 4:1:1). The ratio of 4:1:1 is known to yield 
better training and testing results (but depends on the number 
of data set used for training), [11]. The problem with this 
ratio is that it is not frequently used by researchers. Instead, a 
ratio of 2:1:1 between the three sets has been followed for 
this study.  This ratio coincides with one half of the data 
reserved for training. One quarter of the data has been kept 
for validation while the remaining quarter has been allocated 
for testing the network performance. This categorization is 
corresponding to 168 data sets reserved for training the model 
while 83 data sets were utilized for validation purposes. The 
other 84 data set has been kept aside for testing the new 
model performance. Needless to mention that this testing set 

has never been seen by the network during the training 
sessions. 
 
The developed model consists of one input layer (containing 
a specific number of input neurons or nodes), which 
represents the parameters involved in estimating pressure 
drop. One or two hidden layers contain a certain number of 
neurons and one output layer contains one node, which is 
pressure drop at the outlet. 
The model also contains an activation state for each unit, 
which is equivalent to the output of the unit. An activation 
function will be applied to find out the new level of activation 
based on the effective input and the current activation. 
Additional term is included, which is an external input bias 
for each hidden layer to offer a constant offset and to 
minimize the number of iterations during the training process. 
 
2.1 Data Transformation  

Data transformation is used for ANN model where all data 
samples have been transformed or scaled to fall within a pre-
specified range. This step is crucial before generating a 
successful ANN model because it eliminates the harmful 
effect of varied input ranges. This step is needed to transform 
the data into a suitable form to the network inputs and targets. 
The approach used for scaling network inputs and targets was 
to normalize the training set through using mapminmax built-
in function in Matlab within a pre-specified range [-1, 1]. The 
function can be mathematically expressed with the following 
equation: 

 

min
minmax

minminmax

)(
))(( y

xx
xxyyy +

−
−−

=    (2) 

 
In order to transform the x value to y value, the above 
formula has to be implemented provided that the range of the 
data falls between ymin  and  ymax, [10]. 

2.2 The Resilient Back-propagation Algorithm (RPROP) 

The algorithm acts on each weight separately. For each 
weight, if there was a sign change of the partial derivative of 
the total error function compared to the last iteration, the 
update value for that weight is multiplied by a factor η−, 
where 0 <η− < 1. If the last iteration produces the same sign, 
the update value is multiplied by a factor of η+, where η+ > 1. 
The update values are calculated for each weight in the above 
manner, and finally each weight is changed by its own update 
value, in the opposite direction of that weight's partial 
derivative. This is to minimize the total error function. η+ is 
empirically set to 1.2 and η− to 0.5. 
 
To elaborate the above description mathematically we can 
start by introducing for each weight ijw  its individual update-
value (t)∆ ij , which exclusively determines the magnitude of 
the weight-update. This update value can be expressed 
mathematically according to the learning rule for each case 
based on the observed behavior of the partial derivative 
during two successive weight-steps by the following formula:  
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  where +− <<< η1η0 . 
 
A clarification of the adaptation rule based on the above 
formula can be stated. It is evident that whenever the partial 
derivative of the equivalent weight ijw  varies its sign, which 
indicates that the last update was large in magnitude and the 
algorithm has skipped over a local minima, the update-value 

(t)∆ ij  is decreased by the factor −η . If the derivative holds its 
sign, the update-value will to some extent increase in order to 
speed up the convergence in shallow areas. 
 
When the update-value for each weight is settled in, the 
weight-update itself tracks a very simple rule. That is if the 
derivative is positive, the weight is decreased by its update-
value, if the derivative is negative, the update-value is added: 
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However, there is one exception. If the partial derivative 
changes sign that is the previous step was too large and the 
minimum was missed, the previous weight-update is reverted: 
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Due to that ‘backtracking’ weight-step, the derivative is 
assumed to change its sign once again in the following step. 
In order to avoid a double penalty of the update-value, there 
should be no adaptation of the update-value in the succeeding 
step. In practice this can be done by setting 01)(t

w
E

ij

=−
∂
∂  in 

the ij∆  update-rule above. 
The partial derivative of the total error is given by the 
following formula: 
 

           ∑
= ∂

∂
=
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p ij

p

ij
t

w
E

t
w
E

1
)(

2
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Hence, the partial derivatives of the errors must be 
accumulated for all training patterns. This indicates that the 
weights are updated only after the presentation of all of the 

training patterns, [12]. It is noticed that resilient back-
propagation is much faster than the standard steepest descent 
algorithm. Resilient back-propagation (RPROP) training 
algorithm was adopted to train the proposed ANN model as 
mentioned previously. 

2.3 Network Selection 

Different network topologies have been tried in an attempt to 
find the optimum network architecture. Among them, back-
propagation network with feed-forward algorithm gained 
pronounced publicity in solving hard problems, especially in 
petroleum engineering. However, back-propagation network 
with feed-forward cycle reported to have several 
shortcomings. One of the main problems associated with this 
type of networks is its trapping in local minima instead of 
global one. In addition, slow convergence is witnessed when 
the network fails in several occasions to converge to the 
optimum solution. To avoid such shortcomings, resilient 
back-propagation network (special type of general back-
propagation scheme) has been tried in this study in an attempt 
to generate a successful model for estimating pressure drop in 
pipeline with a wide range of angles of inclination. This 
algorithm is working under the scheme of local adaptive 
learning for supervised learning feed-forward neural 
networks. The reason for selecting such a network topology 
is its fast convergence compared to other networks. In 
addition, contrary to other gradient descent algorithms which 
count for the change of magnitude of weight derivative and 
its sign; resilient back-propagation only counts for the sign of 
the direction of weight. 

2.4  Network Training 

The network has been trained using resilient back-
propagation training scheme. The training parameters have 
been modified several times until the optimum performance 
has been achieved. In this part a number of modified training 
parameters will be presented along with justification for each 
case. Maximum number of iterations has been set to 500 
epochs since the resilient back-propagation is famous of its 
fast convergence. After small number of iterations, the 
network converges to the optimum solution. Maximum 
validation failures have been set to 6 cases only since great 
number of failed validation cases may affect the network 
stability and generality when new cases are presented to the 
network. Learning rate is used to enhance the training speed 
and efficiency. This factor has been varied between the 
values of 0.5 to 1.5 while the performance is monitored 
carefully. A value of 1.05 is found to achieve the fastest and 
most efficient training performance. However, the increase 
and decrease factors +η  and −η  are set to fixed values: −η

=0.5 and 1.2=+η . These are reported in Matlab script as 
(net.trainParam.delt_dec =0.5 & net.trainParam.delt_inc 
=1.2). Initial weight change is kept at its default value 
(net.trainParam.delta0 =0.07) to avoid the escalating values 
of weights. The maximum weight-step determined by the size 
of the update-value is limited. The upper bound is set by the 
second parameter of RPROP, max∆ . The default upper bound 
is set somewhat arbitrarily to 50.0∆max =  and it is reported in 
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Matlab script as (net.trainParam.deltamax= 50). Usually, the 
convergence is rather insensitive to this parameter as well. 
The minimum step size is always fixed to a value 6

min 1e∆ −= . 

2.5  Output Post-Processing (Denormalization) 

This step is set for presenting results of ANN model. This 
step is the most important task after the model has been 
generated. This was needed to transform the outputs of the 
network to a comprehensible value by reverting the original 
value used. It is the stage that comes after the analysis of the 
data and is basically the reverse process of data pre-
processing. 

2.6   Network Performance Comparison 

Pressure drop calculation for Beggs and Brill correlation, 
Gomez et al. model, Xiao et al. model has been conducted 
using an executable code that programmed using FORTRAN 
language. The code allows great flexibility in selecting PVT 
methods, type of pressure drop correlation (vertical, inclined, 
and horizontal), operating conditions, and flow-rate type data. 
Only test data has been chosen for comparing each selected 
model against the proposed ANN model. The network 
performance comparison has been conducted using the most 
critical statistical and analytical techniques. Trend analysis, 
group error analysis, and graphical and statistical analysis are 
among these techniques. 

2.7  ANN Model Architecture 

This model can be defined with number of layers, the number 
of processing units per layer, and the interconnection patterns 
between layers. Therefore, defining the optimal network that 
simulates the actual behavior within the data sets is not an 
easy task. To achieve this, certain performance criteria were 
followed. The design started with adding a few numbers of 
hidden units in the first hidden layer that acts as a feature 
detector. The basic approach used in constructing the 
successful network was trial and error. The generalization 
error of each inspected network design was visualized and 
monitored carefully through plotting the governing statistical 
parameters such as correlation coefficient, root mean squared 
errors, standard deviation of errors, and average absolute 
percent error of each inspected topology. Another statistical 
criterion, maximum validation error was utilized as a measure 
of accuracy of the training model. Besides, a trend analysis 
for each inspected model was conducted to see whether that 
model simulates the real behavior. Data randomization is 
necessary in constructing a successful model, with a frequent 
suggestion that input data should describe events 
exhaustively. This rule of thumb can be translated into the 
use of all input variables that are thought to have a problem-
oriented relevance. These eight selected input parameters 
were found to have pronounced effect in estimating pressure 
drop.  

2.8 Objective Function for ANN Model 

To train the network and measure how well it performs, an 
objective function (or cost function) must be defined to 
provide an explicit numerical rating of the system 

performance. Selection of an objective function is very 
important because it represents the design goals and decides 
what training algorithm can be taken. A few basic functions 
are commonly used. One of them, used in this study, is the 
sum of the squares of the errors. 

∑∑
==

−=
N

k
pkpk

P

p
oy

NP
Error

1

2

1
)(1  (8) 

where, p refers to patterns in the training set, k refers to 
output nodes, and opk and ypk are the target and predicted 
network output for the kth output unit on the pth pattern, 
respectively. 
 
3.  RESULTS AND DISCUSSION 
 
Neural network model for estimating pressure drop in 
pipelines has been already built and optimized after a series 
of model runs. The modeling process starts by optimizing the 
best architecture that achieves the best performance. For 
pressure drop estimation, only Beggs and Brill correlation 
[2], Xiao et al. [5], and Gomez et al. [7] models will be used 
to compare the generated model performance. Trend analysis 
for generated model will be conducted and assessed. Matlab 
software [19] will be utilized for generating codes of the 
program. The final performance has been thoroughly 
addressed through applying a series of statistical and 
graphical error analyses. 

3.1 ANN Model Optimization 

The optimum number of hidden units depends on many 
factors: the number of input and output units, the number of 
training cases, the amount of noise in the targets, the 
complexity of the error function, the network architecture, 
and the training algorithm. In most cases, there is no direct 
way to determine the optimal number of hidden units without 
training using different numbers of hidden units and 
estimating the generalization error of each. 
 
Figs 2 and 3 illustrate the effect of changing the number of 
neurons in the first hidden layer on the average absolute 
percent error and correlation coefficient, respectively. As 
observed from Fig. 2, one hidden layer with nine hidden 
neurons achieved the highest correlation coefficient and the 
lowest average absolute percent error. But, on the other hand, 
the model failed in producing the correct physical trend 
across the data range. Instead, additional hidden layer was 
added and the number of hidden nodes was increased 
gradually until the correct trend was achieved. The selection 
of this model was based on having the highest correlation 
coefficient for the training and validation sets. But still the 
performance of the model is not good enough and the 
inherent relationship between input variables and the output 
is not well extracted. The whole procedure was discarded 
when it was found that obtaining the right trend cannot be 
achieved easily through application of traditional back-
propagation training algorithms such as gradient descent, and 
gradient descent with momentum. They are very slow in 
nature compared to other fast, practical, and high 
performance algorithms such as resilient back-propagation. 
The latter has been used in training the model. 
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Each topology which failed to produce the correct physical 
trend has been discarded. Only three successful topologies 
have been recorded and prepared for comparison. The first 
model consists of seven hidden nodes in the first hidden layer 
while the second model consists of twelve hidden nodes in 
the first hidden layer. The performance of these two networks 
was not up to satisfaction. It is decided to increase the 
number of the hidden layers to reach two and slightly 
increasing the number of hidden nodes until we capture a 
topology that represents the inherent relationship between the 
input parameters and the target output. Only one structure 
was successful in producing the correct physical trend which 
was a network of nine nodes in the first hidden layer and four 
in the second hidden layer. Results of successful networks in 
terms of average absolute percent error and correlation 
coefficient are tabulated in Table 1(Appendix A). However, 
maximum error of each set is presented as a good governing 
statistical criterion for selecting the model of the lowest value, 
is tabulated in Table 2 (Appendix A). In addition, Table 3 
(Appendix A) presents the root mean square errors and 
standard deviations of errors for the validation and testing 
sets which will aid in selecting the best model with the lowest 
value. 
 
Fig. 4 shows the effect of changing number of neurons on 
average absolute percent error for training, testing and 
validation sets while using resilient back-propagation training 
algorithm. Fig. 5 shows the effect of changing the number of 
neurons on maximum error for each set using resilient back-
propagation training algorithm. It is clear from this figure that 
the topology 8-9-4-1 presents the lowest maximum error for 
all data sets. Fig. 6 shows the effect of changing the number 
of neurons on correlation coefficient for each set using 
resilient back-propagation training algorithm. Again, the 
previously mentioned topology achieved the highest 
correlation coefficients for all data sets. Fig. 7 depicts the 
effect of changing the number of neurons on root mean 
square errors for testing and validation sets using resilient 
back-propagation training algorithm. In this time validation 
and testing sets were used as they are verifying the model 
performance while training set is neglected because output is 
seen by the network during training. Using these two sets, the 
same architecture (8-9-4-1) succeeded in producing the 
lowest root mean square errors compared to the other two 
topologies. 
 
Fig. 8 illustrates the effect of changing the number of neurons 
on standard deviation of errors for testing and validation sets 
using resilient back-propagation training algorithm. In this 
figure the architecture of 8-9-4-1 neurons was capable of 
attaining the lowest standard deviation of errors among all 
tested topologies. From the previously presented discussion 
and figures it is clear that the topology of 8-9-4-1 achieved 
the optimum performance among all topologies. However, all 
statistical features used to assess the performance of all 
investigated architectures demonstrated that two hidden 
layers with nine and four hidden nodes are quite sufficient to 
map the relationship between the input variables and the total 
output (pressure drop). This final selection of model topology  

Fig. 2.  Effect of changing Number of Neurons on average 
absolute percent error. 

Fig. 3.  Effect of changing Number of Neurons on 
correlation coefficient 

Fig. 4. Effect of changing Number of Neurons on average 
absolute percent error using resilient back-propagation 

training algorithm 

Fig. 5. Effect of Changing Number of Neurons on Maximum 
Error for each set using Resilient Back-Propagation Training 

Algorithm. 
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Fig. 6. Effect of changing Number of Neurons on correlation 
coefficient for each set using Resilient Back-Propagation 

Training Algorithm. 

Fig. 7. Effect of changing Number of Neurons on root mean 
square errors for testing and validation sets using Resilient 

Back-Propagation Training Algorithm 

Fig. 8. Effect of changing Number of Neurons on standard 
deviation of errors for testing and validation sets using 

Resilient Back-Propagation Training Algorithm 
 
is further assessed through conducting a trend analysis. Input 
weight matrix (from input to the hidden layers), hidden layer 
weight matrices, and the layers bias vectors for the retained 
network, all are extracted from this program and presented in 
Appendix B. These weights and biases can be utilized in 
developing an executable code, which provides an easy way 
for users to implement in predicting pressure drop. 
 

3.2  Trend Analysis 

A trend analysis was carried out to check whether the 
developed model is physically correct. To test the developed 
model, the effects of gas rate, oil rate, water rate, tubing 
diameter, angle of deviation and pipe length on pressure drop 
were determined and plotted on Figs. 9 through 14. The 
effect of angle of inclination was investigated where each 
parameter was plotted against pressure for different angles of 
inclination. This can be demonstrated in Fig. 9, which shows 
the effect of changing gas rate on pressure drop values. As 
expected, the developed model produced a correct trend 
where the pressure drop increases as the gas rate increases. 
However, a justification is needed at low gas flow rate at 
vertical pipe. The Fig. must show that the pressure drop 
should be higher than for other less valued angles. The reason 
for such behavior is that if the line is not horizontal, an 
increase in gas velocity will sweep some of the liquid 
accumulation at the lower sections of the pipe, which might 
lead to an overall decrease in pressure drop, [13]. 

 
This finding is compatible with the physical phenomenon 
according to the general energy equation as stated in the 
following formula:  

dLg
d

Dg
f

g
g

dL
dP

ccc

υρυρυθρ ++=  
2

sin
2

 (9)

where;  

θρ
g
g

c
sin = pressure gradient due to elevation or potential 

energy change, 

Dg
f

c2

2ρυ
= pressure gradient due to frictional losses, 

dLg
d

c

υρυ = pressure gradient due to acceleration or kinetic 

energy change, 

P = pressure, lbf/ft2 
L = pipe length, ft 
g = gravitational acceleration, ft/sec2 
gc = 32.17, ft-lbm/lbf-sec2 
ρ = density lbm/ft3 
θ = dip angle from horizontal direction, degrees 
f = Darcy–Wiesbach (Moody) friction factor 

υ= flow velocity, ft/sec 
D = pipe inner diameter, ft 
If the second and third term of the abovementioned equation 
is considered, the flow velocity is incorporated in the 
numerator of each term, which indicates that the pressure 
drop is directly proportional to the flow velocity and;  

A
Q

=υ  (10) 

As indicated in equation 10 while the cross sectional area is 
fixed for a given pipe size the velocity term can be used  
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Fig. 9. Effect of gas rate on pressure drop at four different 
angles of inclination. 

Fig. 10. Effect of oil rate on pressure drop at four different 
angles of inclination. 

Fig. 11. Effect of water rate on pressure drop at four different 
angles of inclination 

Fig. 12. Effect of pipe diameter on pressure drop at four 
different angles of inclination. 

 

Fig. 13. Effect of pipe length on pressure drop at four 
different angles of inclination. 

 
Fig. 14. Effect of angle of inclination on pressure drop at four 

different pipe piameters. 
 

interchangeably with flow-rate. This expression is valid for 
oil flow-rate, gas flow-rate, and water flow-rate. The ANN 
model succeeded in producing the right trend for the three 
phases (gas, oil, and water) as illustrated in Fig. 9, Fig. 10, 
and Fig. 11, respectively. 
 
Another observation is reported where the pressure drop is 
found to be an increasing function with respect to angle value 
for all three phases, which is physically sound and follows 
the normal trend. The pressure drop has been plotted against 
each phase rate (oil flow-rate, water flow-rate, and gas flow-
rate) for different four configurations (horizontal, vertical, 
inclined hilly terrain, and inclined downhill). 
 
From Eq. 9 it is clear that the pipe diameter is inversely 
proportional to pressure drop. Fig. 12 is depicting this 
relationship for all pipe configurations. However, the 
relationship between pressure drop and length of the pipe has 
been confirmed by the ANN model (pressure drop increases 
with increasing length of the pipe) as shown in Fig. 13. 

 
The effect of the angle of inclination on the pressure drop has 
been counted for all range of the investigated angles (-52 
degrees to 208 degrees). Fig. 14 shows the trend of angle of 
inclination with respect to pressure drop for four different 
pipe diameters. Again, from Eq. 9 (elevation term) sine of the 
angle is directly proportional to pressure drop; 

θρα sin
cg

g
dL
dP  (11) 
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If this equation is manipulated numerically for the 
investigated range of angles, it will be that pressure drop is an 
increasing function from the range of -52 degrees to 90 
degrees and a decreasing function beyond this range till 208 
degrees. The ANN model was able to produce the correct 
physical behavior.  

3.3  Error Analysis 

Error analysis was performed to check the studied 
correlations plus the new proposed model in order to evaluate 
the suitability, accuracy comparability. Both graphical and 
statistical error analysis have been utilized simultaneously. 

A. Statistical Error Analysis 
This error analysis is utilized to check mathematically for 
how far and good the models are. The statistical parameters 
used for comparison are: average percent relative error, 
average absolute percent relative error, minimum and 
maximum absolute percent error, root mean square error, 
standard deviation of error, and correlation coefficient.  

B. Graphical Error Analysis 

Graphical tools aids visualizing the performance and 
accuracy of a correlation. Two graphical analysis techniques 
are employed; those are cross plots and error distribution that 
are presented as follows:  

1)  Error Distributions 

Error distributions around the zero line are plotted to ensure 
that the models are not adopting certain error trend. None of 
the addressed models plus the new proposed ANN model 
show specific error trend. Table 4, in appendix A shows some 
of statistical analyses such as the minimum and the maximum 
error reported for each model including the new proposed one. 
As illustrated in Table 4 (Appendix A)., the new proposed 
ANN model achieves the lowest Average Absolute Percent 
Relative Error (AAPE), compared to other tested models 
(12.11%), while Beggs and Brill model is ranked the best 
among the three tested models with AAPE reaching 20.08%. 
The average absolute percent relative error is a significant 
sign of the accuracy of the models. Gomez et al. model [7], 
performed the second best among the tested models with 
AAPE reaching 20.85% while Xiao et al. model [5], was the 
least accurate one with AAPE of 30.85%. As noticed from 
the previous discussion, the new proposed ANN model 
outperforms all of the investigated models in terms of lower 
maximum error obtained by the testing set that reaches (44%) 
while the other models gave maximum error ranges between 
71% to 79%, as shown in Table 4 (Appendix A). The new 
developed model also achieves the second lowest minimum 
error for the range of tested data with approximate values of 
0.2645%, directly after Xiao et al model. Root Mean Square 
Error (RMSE) is used to measure the data dispersion around 
zero deviation. Again, the proposed ANN model (testing set) 
attains the lowest RMSE of 15.8% compared to the Beggs 
and Brill and Gomez et al. models with 26.8% and 26.03%, 
respectively. Standard Deviation (STD) was used as another 
confirming tool of model superiority. This statistical feature 
is utilized to measure the data dispersion. A lower value of 

standard deviation indicates a smaller degree of scatter. The 
proposed ANN model obtains the lowest STD of errors 
(10.02), while Xiao et al. model achieves the lowest STD 
among other investigated models with a value of 15.7, as 
shown in Table 4.  

2) Cross plots 

In this technique, all estimated values are plotted against the 
observed values and thus a crossplot is formed. A 45° straight 
line between the estimated versus actual data points is drawn 
on the cross plot which indicates a perfect correlation line. 
The closer the plotted data point to this line, the better the 
correlation is. 
Figs. 15 through 18 present cross plot for the pressure drop 
for all investigated models, as well as for the proposed ANN 
model. The new model gives very close values to the perfect 
correlation line in all data points.  
The ANN model achieved the highest correlation coefficient 
(0.98821), while other correlations indicate higher scattering 
range compared to the proposed ANN model, where 0.9805 
is obtained by Beggs and Brill model; 0.9765 for Gomez et al. 
model; and 0.9780 for Xiao et al. model. Beggs and Brill 
correlation achieved the highest correlation coefficient 
among all other mechanistic models.  However, Beggs and 
Brill model was found to overestimate the pressure drop in 
the tested range, as presented in Fig. 18. 
 
This finding has coincided with the past conclusion of Zhou, 
[4]. However, Xiao et al. model tends to underestimate the 
pressure drop for most of the tested cases as shown in Fig. 16. 
In addition, Gomez et al. model has been found to 
overestimate the pressure drop especially at high pressure 
drop values as clearly shown in Fig. 17. 
 
For the sake of easing the analysis, correlation coefficients 
for all the investigated models; as well as for the proposed 
ANN model was plotted against the AAPE. 
The left upper corner of the same figure indicates the location 
of the best model where higher correlation coefficient and 
lower average absolute percent relative error are intersected. 
 
As shown in Fig. 19 the new proposed ANN model shows 
the optimum performance compared to the rest of the 
investigated models. Beggs & Brill model ranked second best 
followed by Gomez et al. and Xiao et al. models. A close 
result can be extracted when root mean square errors of each 
model have been plotted against the standard deviation of 
errors, as presented in Fig. 20. However, this time the best 
model will be located at the left lower corner, which 
indicated by the intersection of both lower values of RMSE 
and AAPE. Again the new proposed ANN model falls at the 
lower left corner of the graph, while the rest of the tested 
models fall above him. This indicates superior performance 
of ANN model compared to other tested models. The final 
proposed topology is depicted in Fig. 21. 
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Fig. 15. Cross plot between estimated and actual pressure 
losses values for testing set (This study). 

 

Fig.  16. Cross plot between estimated and actual pressure 
losses values for Xiao et al. Model (1990). 

Fig. 17. Cross plot between estimated and actual pressure 
losses values for Gomez et al. Model (1999). 

Fig. 18. Cross plot between estimated and actual pressure 
losses values for Beggs and Brill Model (1991). 

Fig. 19. Correlation coefficients vs. average absolute 
percent relative errors for the proposed ANN model and 

other investigated models. 

Fig. 20. Standard deviation of errors vs. root mean square 
errors for the proposed ANN model against other 

investigated models. 
 
  

4. CONCLUSION 

The following results can be drawn: 
− The potential of using Artificial Neural Network 

technique for estimating the pressure drop in pipelines 
with wide range of angles of inclination was investigated. 

− The new proposed model achieves the optimum 
performance when compared to the best available models 
adopted by the industry for estimating pressure drop in 
pipelines for all angles of inclination with an outstanding 
correlation coefficient reaching 98.82%. 

− Statistical analysis revealed that the ANN model achieved 
the lowest average absolute percent error, the lowest 
standard deviation, the lowest maximum error, and the 
lowest root mean square error.  

− Average Absolute Percent Error, which has been utilized 
as a main statistical feature for comparing models 
performances, showed that ANN model obtained 12.1%. 

− Accurate results can be obtained if wider range of data is 
used for generating ANN model. The model can be 
applied confidently within the range of trained data. 
Extrapolating data beyond that range might produce 
erroneous results.  
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Fig. 21. Schematic Diagram of the New Proposed ANN Model 

NOMENCLATURE 

g  Acceleration of Gravity, ft/sec2 

ky  Actual Output 

pko  Actual Output Value from the kth unit 

A Cross Sectional Area 

f  
Darcy–Wiesbach (Moody) friction factor 

ρ  density lbm/ft3 

pky  Desired output value from the kth unit. 

D  Diameter 

θ Dip Angle from Horizontal Direction, degrees 

Q  Flow Rate 

υ  flow velocity, ft/sec 
)(tij∆

 
Individual Weight Update-Value 

min∆
 

Minimum step size by Resileint Back-propagation 
algorithm 

ie Residual 

ie
* Semi-studentised residual (or standard residual) 

gc Gravitational Conversion Factor =32.17, ft-lbm/lbf-sec2 

k refers to output nodes 

k subscript refers to the kth output unit 
L Pipe Length, ft 
o a superscript refers to quantities of the output layer unit 
p subscript refers to the pth training vector 
ypj Output Signal of the neuron 
η+ Factor >1 
η− Factor between 1 and 0 
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APPENDIX A 

 
TABLE 1: EFFECT OF CHANGING NUMBER OF NEURONS WITH RESPECT TO AVERAGE ABSOLUTE PERCENT ERROR  

AND CORRELATION COEFFICIENT 
Architecture AAPE (TEST) AAPE (TRAIN) AAPE (VALID) R (TEST) R (TRAIN) R (VALID) 

8-7-1 15.44 18.04 19.45 0.98196 0.95567 0.94699 

8-12-1 11.61 14.50 22.56 0.98708 0.97842 0.95276 
8-9-4-1 12.11 12.38 17.50 0.98821 0.9889 0.96705 

TABLE 2: EFFECT OF CHANGING NUMBER OF NEURONS WITH RESPECT TO AVERAGE ABSOLUTE PERCENT ERROR  
AND CORRELATION COEFFICIENT 

Architecture Maximum Error (TEST) Maximum Error (TRAIN) Maximum Error (VALID) 
8-7-1 56.875 234.338 145.504 
8-12-1 45.599 209.472 385.260 
8-9-4-1 43.999 96.665 165.312 

  
TABLE 3: EFFECT OF CHANGING NUMBER OF NEURONS WITH RESPECT TO ROOT MEAN SQUARE ERROR AND 

 STANDARD DEVIATION OF ERRORS 
Architecture RMSE (VALID) RMSE (TEST) STD (TEST) STD (VALID) 
8-7-1 32.12 19.91 13.09 15.15 
8-12-1 51.50 14.761 10.48 14.14 
8-9-4-1 32.92 15.791 10.02 11.78 

TABLE 4:  STATISTICAL COMPARISONS FOR PRESSURE LOSS CORRELATIONS AND THE PROPOSED ANN MODEL 

Correlation / Model AAPE APE Emax% Emin % RMSE  R STD 

Beggs and Brill model (1991) 20.0762 -10.9866 79 0.3333 26.7578 0.9805 16.9538 
Gomez et al. model (1999) 20.802 -2.0463 72.65 0.525 26.0388 0.9765 17.7097 
Xiao et al. model (1990) 30.845 29.8176 71.4286 0.0625 35.4582 0.9780 15.7278 
Neural network model (this study) 12.1078 1.609 43.996 0.2645 15.795 0.9882 10.0158 

 
APPENDIX B 

EVALUATING THE INPUT WEIGHT MATRIX (FROM INPUT TO THE FIRST HIDDEN LAYERS) 

  Node # 
property  Node-1 Node-2 Node-3 Node-4 Node-5 Node-6 Node-7 Node-8 Node-9 

Gas flow-rate (MSCF/D) 1.0343 -1.1749 -1.017 -2.9654 -1.2865 -2.143 5.3126 1.8905 1.0343 
Water Flow-rate (Bbl/d) -1.0365 0.0115 -2.1898 -2.1958 -1.5136 0.5539 1.6488 0.8211 -1.0365 
Oil Flow-rate (Bbl/d) 1.065 3.6286 2.8755 -0.6039 0.6805 1.944 -42.363 0.622 1.065 
Length of the Pipe (Ft) 1.6953 0.0224 0.0522 -0.1957 -2.7552 1.0459 -0.1329 -0.1035 1.6953 
Angle of Inclination (Degrees) -0.3292 1.4317 -1.1335 -1.8564 -0.0055 2.0622 -2.2287 -0.2658 -0.3292 
Diameter of Pipe (Inches) 1.3839 0.8349 1.2097 1.3142 -1.2735 -1.689 0.1782 -0.1842 1.3839 
Well-Head Pressure (Psia) -0.1248 1.0413 1.0389 1.7503 -0.8582 -0.9914 0.74 1.3821 -0.1248 
Well-Head Temperature (0F) 1.3919 -0.1731 1.3601 0.8118 2.2914 -1.3084 0.3338 -1.3303 1.3919 

 

EVALUATING THE FIRST HIDDEN LAYER'S WEIGHT MATRIX (FROM THE FIRST HIDDEN LAYER TO THE 2ND ONE) 

Node-1 0.9989 -1.8994 -0.7938 1.6057 -2.9226 -0.2931 1.1508 3.2188 0.8182 
Node-2 8.7708 -0.5214 -1.2608 2.1613 1.0451 -2.2038 -0.6524 -0.9156 -2.0392 
Node-3 9.7687 0.2867 2.5976 -1.1331 -0.4069 -0.2256 -3.2426 -2.9504 -2.0132 
Node-4 -10.0494 -2.9247 -0.5774 -2.8685 2.1803 2.2858 1.7217 -2.1561 -0.4904 
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EVALUATING THE 2ND HIDDEN LAYER'S WEIGHT MATRIX (FROM THE 2ND HIDDEN LAYER TO THE OUTPUT) 

Node-1 Node-2 Node-3 Node-4 

0.6951 -0.7911 -0.9162 0.2264 

 

EVALUATING THE INPUT BIAS VECTOR 

Node-1 Node-2 Node-3 Node-4 Node-5 Node-6 Node-7 Node-8 Node-9 
-5.7063 -3.1357 1.4998 -1.2803 1.6987 1.4067 0.4247 0.4056 3.615 

EVALUATING THE FIRST HIDDEN LAYER'S BIAS VECTOR 

Node-1 Node-2 Node-3 Node-4 
-0.7413 1.8413 6.0594 0.2204 

EVALUATING THE SECOND HIDDEN LAYER'S BIAS VECTOR 

Node-1 

0.5664 
 

TRAINING DATA RANGE  
 
Property Pressure Drop 

(Psia) 
Gas flow-rate 

(MSCF/D) 
Water Flow-
rate (Bbl/d) 

Oil Flow-rate 
(Bbl/d) 

Length of the 
Pipe (Ft) 

Angle of 
Inclination 
(Degrees) 

Diameter of 
Pipe 

(Inches) 

Well-Head 
Pressure 

(Psia) 

Well-Head 
Temperature 

(0F) 
Minimum 10 1078 0 2200 500 -52 6.065 160 63 
Maximum 240 19024 8335 24800 26700 208 10.02 540 186 
Mean 80.61905 7594.568 1523.494 12852.47 11447.41 44.95238 8.60422 322.9643 133.756 
Standard Deviation 56.53951 3203.089 1952.78 5743.255 6247.435 59.5522 1.74119 133.6547 22.02598 

 
VALIDATION DATA RANGE 

Property Pressure 
Drop (Psia) 

Gas flow-rate 
(MSCF/D) 

Water Flow-
rate (Bbl/d) 

Oil Flow-rate 
(Bbl/d) 

Length of the 
Pipe (Ft) 

Angle of 
Inclination 
(Degrees) 

Diameter of 
Pipe (Inches) 

Well-Head 
Pressure 

(Psia) 

Well-Head 
Temperature 

(0F) 
Minimum 10 3346.6 0 4400 3600 -13 6.065 160 82 
Maximum 250 19278 8424 25000 26700 208 10.02 540 168 
Mean 84.120 7384.21 2824.01 13234.39 13590.36 72.927 9.3729 265.710 132.891 
Standard 
Deviation 46.2088 3154.73 2377.767 4877.887 7395.658 69.03442 1.145488 92.52943 19.08965 

 
 
 

TESTING DATA RANGE 

Property Pressure   
Drop (Psia) 

Gas flow-rate 
(MSCF/D) 

Water 
Flow-rate 

(Bbl/d) 

Oil Flow-
rate (Bbl/d) 

Length of 
the Pipe (Ft) 

Angle of 
Inclination 
(Degrees) 

Diameter of 
Pipe (Inches) 

Well-Head 
Pressure 

(Psia) 

Well-Head 
Temperature (0F) 

Minimum 20 3239 0 3800 4700 -52 6.065 170 72 
Maximum 250 19658.2 8010 22700 25000 128 10.02 545 173 
Mean 83.75 7583.855 1336. 9 12112.8 10411.1 31.7619 8.31893 354.964 138.5833 
Standard 
Deviation 64.4433 2458.774 2016.5 5105.85 5196.26 46.7587 1.82076 142.019 20.05066 

 
 
 
 


