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ABSTRACT  
 

The purpose of this paper is to propose and investigate a new approach 

for estimating response transfer function of offshore structures with 

wave as excitation input. The approach is based on time-varying 

autoregressive with exogenous input (TVARX) model. This method is 

virtually unexplored in offshore engineering field, as a number of 

works have shown that transfer functions such as response amplitude 

operator are estimated based on discrete Fourier transform (DFT). 

Here, we outline a practical algorithm for TVARX model which uses 

expectation-maximization (EM) algorithm based on Kalman smoother 

to generate the transfer function. The method is then applied to sampled 

discrete wave as excitation input and the motion responses of offshore 

structures as output data, generated from simulated field measurements. 

The proposed approach outlined here has shown the tremendous 

potential in the estimation of transfer function. The results indicate that 

TVARX model produces accurate, smooth and less noise TF estimates 

over DFT method. TVARX model also allows for the creation of time 

varying transfer function (TVTF). 

 

KEY WORDS: Motion responses; Kalman smoother; Time-varying 

ARX model; Transfer function. 
 

INTRODUCTION 

 

Generally, the motion responses of platforms and environmental 

conditions such as wind, wave and current are available in the form of 

field measurements, experimental and numerical data. The time history 

of such recorded data can be utilized to generate dimensionless form 

namely response functions (RFs) either in time or frequency domain, 

i.e. transfer function (TF) and response amplitude operators. This paper 

is addressed to generate TF from the available recorded data. This is 

motivated from the offshore monitoring campaign (Buchner, 2009; 

Boom, 2005) and physical model limitations (Chakrabarti, 1998) that 

transfer function can be used for modal analysis, dynamic response 

prediction, motion control systems design and damage detection of 

offshore platforms.    

 

There are three transfer functions that can be generated from marine 

structures (Taghipour, 2008). The first is wave to force TF, second is 

force to motion TF and the last is wave to motion TF. This paper will 

work on the estimation of wave to motion TF due to the availability of 

data. In order to estimate the response transfer functions, DFT has been 

the most widely used technique. However, due to sea state exhibits 

nonstationary and nonlinearity, the method is not recommended 

anymore. It has been shown by prior researches such as (Huang, 1998; 

Hwang, 2003; Liu, 2000; Schlurmann, 2003). The non-stationarity and 

nonlinearity may also come from platform motion responses. The use 

of DFT method may affect the frequency response of offshore 

structures (Hwang, 2003). 

 
To overcome the aforementioned condition, this paper utilizes the 

TVARX model to estimate the transfer function. This method is 

proposed in order to accommodate the non-stationarity and nonlinearity 

which come from either in waves or platform motion responses. It does 

not matter where the platforms located, either in shallow or deep water. 

Example is in deep water the waves can still be described as stationary 

and ergodic process; however the process will be non-stationary in 

extreme weather or else the non-stationary can come from platform 

motions itself. In other word, the proposed method is applicable in any 
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kind of sea state as long as there are non-stationarity and nonlinearity in 

the given time series. This is because TVARX model is flexible 

method. If the time series is stationary, then the TVARX model can be 

switched to ARX model. Besides that, TVARX model also provides 

TVTF of analyzed system that may have never been carried out by the 

DFT method. 

 

TIME-VARYING TRANSFER FUNCTION 

 
By assuming that a system is linear and causal, general multivariable 

system with L inputs and P outputs is expressed in Eq. 1, 
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There exist linear relationship between scalar excitations 

L1 u,,u L and scalar responses P1 y,,y L , noted by TF in term of 

impulse response PLh . Because we are concerned only with wave to 

motion TFs, Eq. 1 will be single input multi output system where u is 

ocean wave and P1 y,,y L  are motion responses of offshore 

structure. Each entry of PLh is related with respective input (wave) and 

output (surge, heave, sway, roll, pitch and yaw) and can be approached 

with single-input single-output system. In the point of view of 

frequency domain, the transfer functions in Eq. 1 may be written as Eq. 

2. 

( ) ( )
( ) .eS

eS
eH

j
L

j
LPj

LP ω

ω
ω =                                                            (2) 

Notation ( )ωjLP eH  denotes the TF from the input L  to the output 

P signals. Term ( )ωjLP eS  is cross-spectrum of the input L  and 

output P signals (wave and motion responses), while ( )ωjL eS is auto- 

spectrum of the input L  (wave) at particular frequency. 

  

Conventionally, spectrum either wave or motion responses is carried 

out by the DFT to produce the TF. This method has been the standard 

technique used in frequency domain analysis for offshore engineering. 

One of the drawbacks of the DFT is that it does not provide any 

information about the time at which a frequency component occurs. 

Nonetheless, when the signals are nonstationary, then the DFT is not 

applicable anymore. If the spectrum either wave or motion response are 

presented in time-frequency distribution (TFD), then time-varying TF 

(TVTF) can be generated. It can be calculated by modifying equation 

(2) as follows: 

 ( ) ( )
( ) .e,kS

e,kS
e,kH

j
L

j
LPj

LP ω

ω
ω =                                                    (3) 

Term k  indicates discrete time index and lead to the TVTF. The norm 

of ( ).e,kH
j

LP
ω

is TV gain of the system. Among many tools that can 

be used for time-frequency analysis, short time Fourier transform 

(STFT) and Wavelet transform are very popular methods. However, 

like other nonparametric approaches, STFT and Wavelet has resolution 

conflict in both frequency and time domain due to Heisenberg 

uncertainty principle. The best solution is to employ time-varying 

spectral analysis which is not affected by resolution conflict. Generally, 

parametric approaches are solution for such a case. 

 

TVARX MODEL 

TVARX model is an extended ARX model, but its coefficients are 

time-variant. As a parametric approach, TVARX model generate TVTF 

by modeling the signals as a time series. This realization enables to 

produce the zeros and poles of the system (roots of the characteristic 

polynomial) through TVARX coefficients. TVARX model in discrete 

time index k  is given by Eq. 4. Notations P andM represent the order 

of TVARX model while ( )ku and ( )ky are the input and output signal, 

respectively. 

( ) ( ) ( ) ( ) ( ) ( ).kekukbikykaky
M

0

P

1i
i +−∑+−∑=

==
l

l
l                          (4) 

Terms ( )kai and ( )kbl are the TVARX coefficients and ( )ke is the 

driving noise which is Gaussian with zero mean and variance
2
eσ . 

From Eq. 4, it can be seen that identification of ( )kai and ( )kbl is the 

main task by setting up the model order. Estimation of ( )kai and 

( )kbl can be computed through several methods, namely adaptive 

method and basis function approach (Sodsri, 2003). Until now, criteria 

for selecting the proper basis function is not available yet and still open 

research (Sodsri, 2003; Asutkar, 2010; Zhang, 2010), while adaptive 

method is very popular due to its simplicity, generality and ability of 

real time processing. Hence, adaptive method is addressed in this paper. 

To accommodate the use of adaptive method in estimation 

of ( )kai and ( )kbl , Eq. 4 must be converted into a measurement 

equation in vector notation as expressed in Eq. 5. 

( ) ( ) ( ) ( ).kvkxkCkh +=                                                                      (5) 

Notation ( ) ( ) ( ) ( ) ( )[ ]Mku,,1ku,Pky,,1kykC −−−−= LL is the 

vector of the past measurements; vector 

( ) ( ) ( ) ( ) ( )[ ]TM1P1 kb,,kb,ka,,kakx LL= is the array of TVARX 

coefficients and ( )kv is the measurement noise with covariance 

matrix R . By simplifying the TVARX coefficients evolve over a time 

linearly and first-order Gauss-Markov process, and then ( )kx can be 

expressed as state equation in Eq. 6. 

( ) ( ) ( ).kw1kAxkx +−=                                                                     (6) 

The term A  in Eq. 6 is state transition matrix and ( )kw is the state 

noise with covariance matrixQ . Equations 5-6 represent TVARX 

models in a state-space form. Both equations contain model parameters 

which are assumed before the application of adaptive method. These 

parameters are initial conditions ( )000 ,N~x Σµ , A ,Q , R and 

denoted by { }00 ,,R,Q,A Σµ=θ . If some simplifications are 

introduced in Eq. 6, then the equation calls for two remarks: 

1. If there is no state noise in the state equation and state transition 

matrix A is constrained to a scaled identity matrix, then Eq. 6 can 

be written in Eq. 7 where state variable depends on the choice of 

the forgetting factor λ , expressed as Eq. 7. 

       ( ) ( ) .1kxkx 2/1 −λ=                                                                   (7) 
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Equation 7 is called adaptive autoregressive (AAR) model and 

tuning parameter is λ and can be estimated with least mean square 

(LMS) or recursive least square (RLS) algorithm.   

2. If state equation in Eq. 6 is modeled as a random-walk model, then 

it can be expressed as Eq. 8. 

       ( ) ( ) ( ).kw1kxkx +−=                                                                (8) 

Noise covariance matrix is constrained to an identity matrix: 

2
w

pxpIQ σ= where 
2
wσ is a noise state variance. The unknown 

parameter in random-walk model is
2
wσ . 

Estimation of ( )kx  in Eq. 7 using LMS and RLS algorithm had been 

investigated by (Sodsri, 2003). He revealed that the adaptive method 

under this class is sensitive to the noise and fails to track the systems 

with fast or broad frequency. Estimation of Eq. 8 was successfully 

carried out (Nguyen, 2009) using amplitude demodulation-Kalman 

smoother (AD-KS). However, both covariance matrix (Q and R ) are 

set up manually. Further, the drawback of both models had been 

investigated by (Khan, 2007) and they found out that both impose 

constraints to reduce the number of tuning parameter and might 

deteriorate the performance of time-varying spectrum estimation. They 

proposed the use of Kalman smoother with EM algorithm as a solution 

because of its superiority. This paper addresses the use of Kalman 

smoother with EM algorithm and applied in TVTF estimation.  

 

KALMAN SMOOTHER WITH EM ALGORITHM 
 

Kalman smoother with EM algorithm is smoothed Kalman filter which 

is optimized with EM algorithm. Basic theory covers Kalman filter, 

smoothing equations and expectation-maximization of log-likelihood 

function. Kalman filter calculates the state estimate ( ) ( )( )kkP,kkx in 

Eq. 8 in two stages: time update equations (predictor) and measurement 

update equations (corrector). The time update equations project the 

state variable and state covariance matrix estimates forward from time 

index 1k −  to k , written as Eq. 9 & Eq. 10. 

( ) ( )1k1kAx1kkx −−=−                                                              (9) 

( ) ( ) .QA1k1kAP1kkP T +−−=−                                              (10) 

The measurement update equations incorporate a new measurement 

into the a priori estimate to obtain an improved a posteriori estimate. 

The first step in measurement update equations is to compute Kalman 

gain as expressed in Eq. 11. 

( ) ( ) ( ) ( ) ( ) ( )( ).kC1kkPkCRkC1kkPkK
TT −+−=                    (11) 

The next step is to compute an a posteriori state estimate ( )kkx as a 

linear combination of an a priori state estimate ( )1kkx − , Kalman 

gain and weight difference between an actual measurement ( )ky and a 

measurement prediction ( ) ( )( )1kkxkC − as expressed in Eq. 12. The 

difference ( ) ( ) ( )( )1kkxkCky −− is residual. The residual reflects the 

discrepancy between the predicted measurement ( ) ( )( )1kkxkC − and 

the actual measurement ( )ky .  

( ) ( ) ( ) ( ) ( ) ( )( )1kkxkCkykK1kkxkkx −−+−=                          (12) 

The final step is to obtain an a posteriori error covariance estimate via 

Eq. 13. 

( ) ( ) ( )( ) ( )1kkPkCkKIkkP
T −−=                                               (13) 

The use of procedures above will generate lagged response of 

( )kkx estimate. Smoothing equations can solve it by reducing delay 

and decreasing the variance of state estimates (Nguyen, 2009). 

Combination between Kalman filter and smoothing equations is called 

Kalman smoother. Because all input-output signals are processed off-

line, then fixed-interval smoother is applied in this paper. This method 

has performance to improve the accuracy of the state estimate (Khan, 

2007) and derived in Eqs. 14-16, 

( ) ( ) ( ),1kkPA1k1kP1kJ T −−−=−                                           (14) 

( ) ( ) ( ) ( ) ( )( ),1kkAxKkx1kJ1k1kxK1kx −−−+−−=−         (15) 

( ) ( ) ( ) ( ) ( )( ) ( ) .1kJ1kkxKkx1kJ1k1kPK1kP
T−−−−+−−=−   (16)                                                                                           

EM algorithm is utilized to tune the model parameters θ based on 

maximum likelihood of ( )K:1y in the presence of hidden 

variables ( ) K,,1k,Kkx L= . EM algorithm consists of two steps. 

First step is calculation of the expected complete log-likelihood as a 

function of θ . The expected log-likelihood is expressed in Eq. 17. 

( ) ( )( ) ( ){ },K:1yK:1x,K:1yplogF Ε=                                     (17) 

The expected likelihood depends on three quantities as stated in Eqs 

18-20. 

( ) ( ) ( ){ },K:1ykxKkx Ε=                                                               (18) 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ,KkxKkxKkPK:1ykxkxKkS
TT +=Ε=      (19) 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) .K1kxK,kxK1k,kP

K:1y1kxkxK1k,kS
T

T

−+−=

−Ε=−
                    (20) 

Term ( )K1k,kP −  in Eq. 20 must be calculated through Eq. 21 while 

all the quantities in Eqs. 18-19 are calculated using the Kalman 

smoother equations, 

  

( ) ( ) ( ) .KkP1kJK1k,kP −=−                                                     (21) 

Second step in EM algorithm is maximization by direct differentiation 

of F  with respect to the θ . These two steps are applied iteratively 

until convergence achieved. Estimation of model parameters θ from 

F is explained in detail by (Khan, 2007) and it is not presented here 

due to the lengthy of the expressions. At the end of EM algorithm, term 

( )Kkx is TVARX coefficients. Finally, time-varying transfer function 

(TVTF) by using TVARX coefficients can be expressed in Eq. 22. 

( )
( )

( )
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eKka1

eKkb

e,KkH
P

1i

ij
i

M

0

j

j

∑+

∑
=

=

ω−

=

ω−

ω l

l
l

                                          (22) 

Terms in Eq. (22) are explained as follows: ( )Kkai and ( )Kkbl  are 
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the
thi ,

th
l  elements of coefficients of TVARX model, respectively 

and ω is the observed frequency.    

 

NUMERICAL EXAMPLES 

 
In this section, numerical example of single input single output (SISO) 

system as a verification of the method in estimating frequency response 

is presented. As a sample, linear time-invariant transfer function 

(LTIVTF) in z-domain, which has second order denominator, is given 

by Eq. 23. 

( ) .
5227z3634.02z1.634

5.210z2
zH

++

−−
=                                                   (23)  

The LTIVTF in Eq. 24 is excited with chirp input signal that has 

amplitude and frequency modulation as shown in the top panel of Fig. 

1. Input signal has frequency jump that occurs in low frequency from 

0.5 Hz into 2 Hz. This is a kind of an attempt in capturing systems 

having low frequency dynamic. This input signal is designed in such a 

way that output signal produced from true transfer function in Eq. 24 is 

nonstationary signal with amplitude and frequency modulation as 

depicted in the top panel of Fig. 2. Simulation is carried out in 10 

seconds with a 200 Hz sampling frequency and no measurement noise 

is injected. Characterization of input-output signal in time-frequency 

distribution (TFD) is presented in the bottom panel of Fig.1 and Fig.2. 

 

TFD of input and output signal obtained from TVAR model (TVARX 

without exogenous input)  are solved by least mean square (LMS) and 

recursive least square (RLS) algorithm based on Eq. 7 and Kalman 

smoother with EM algorithm (KS with EM) as the proposed method 

based on Eq. 8 and Eqs. 18-21. Here, two non-parametric methods, 

namely Hilbert transform and short time Fourier transformation (STFT) 

are taken as bench mark.  

 

In those figures, Hilbert transform and STFT as non-parametric 

approach clearly show their drawback in tracking nonstationary signal 

for the underlying system. Frequency estimate from using Hilbert 

transform bounces roughly before the jump and after the jump, while 

STFT and RLS behave similarly. LMS produces lagged response 

before the jump and still bounces after the jump. Compared to the 

others, KS with EM has better tracking capability. It is found out that 

model order of 2 for TVAR model is adequate to estimate spectral 

contents for this numerical example. 
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Fig. 1 TFD of input signal under frequency and amplitude 

modulation without noise 
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Fig. 2 TFD of output signal under frequency and amplitude 

modulation without noise 

Next step is LTF gain estimation of input-output signal. One non-

parametric estimation method and one parametric estimation method 

have been chosen, namely Welch’s averaged periodogram and ARX 

model, respectively.  
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Fig. 3 LTF gain of numerical example by TFESTIMATE and ARX 

model 

 

The non-parametric method is DFT-based method, where Welch’s 

averaged periodogram is provided by the function tfestimate in 

Matlab’s signal processing toolbox. The function tfestimate 

estimates the transfer function by taking the ratio of the Fourier 

transform of the input-output pair, where the input-output pair is 

segmented into data blocks to reduce the variance. The best estimate 

using Welch’s method is found by using two data blocks which are 

overlapped by 50% and filtered with Hanning window. The parametric 

method is based on ARX model. Solution of ARX model is carried out 

by using the function arx in Matlab’s system identification toolbox. It 

is found that ARX model has model order of (2,2) to fully capture the 

non-stationarity of the input-output pair. Figure 3 gives comparison 
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between frequency responses obtained from tfestimate and ARX 

model with respect to the true frequency. True frequency of the system 

is around 9 Hz which is obtained from Bode diagram of Eq. 24. It is 

clear from the Fig. 3 that both methods can estimate frequency 

response of the numerical example. However, ARX model produces 

sharper peak compared to tfestimate. The gain is smaller 

compared to true model. However, both methods only give averaged 

TF and cannot give information on time localization of LTF.    

 

Further, by applying the TVARX model, TF of system in Eq. 23 can be 

estimated. The coefficients are depicted in Fig. 4. By putting hose 

coefficients into Eq. 22, LTF gain can be calculated. LTF gain in Fig. 4 

is projection of LTVTF in gain-frequency distribution. From number of 

points which are evaluated on frequency axis, the obtained LTVTF gain 

has similar trend with the true TF in Eq. 23. Their peaks are centered 

on the true frequency. It confirms the capability of TVARX model to 

estimate the accurate TF gain even it is produced from linear time-

invariant system.  
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Fig. 4 Coefficients of TVARX model 
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Fig. 5 LTF gain of numerical example by TVARX model 

 

Furthermore, LTVTF gain is projected into time-frequency distribution 

(in 3D distribution) and depicted in Fig. 6. TVARX model can be 

estimated successfully by showing that the highest TV gain value is 

around the true frequency of the system. TVARX coefficients are 

estimated by Kalman smoother with EM algorithm as explained in the 

previous section. Here, model order of (2,2) is adequate to estimate the 

TVTF for this numerical example. As benchmark, STFT-based TVTF 

is presented in Fig. 7. STFT is carried out with window length 4000. 

Every window is overlapped by 50% and multiple window procedure is 

carried out under Hamming window. The result shows that STFT can 

estimate the TVTF, but the figure confirms the restriction of temporal 

resolution of STFT due to Heisenberg’s uncertainty principle. It should 

be noted that the STFT-based TVTF is presented here as a quick 

comparison because of its simple algorithm compared to Hilbert 

transformation.  

 

Fig. 6 LTVTF of numerical example by TVARX model 

 

Fig. 7 LTVTF of numerical example by STFT 

 

This is the reason why TVTF is presented in this paper. TVTF provides 

additional insights of the analyzed system that may have never been 

revealed using the conventional TIVTF.  

 

APPLICATION TO THE SIMULATED FIELD 

MEASUREMENTS DATA 

 
In this section, the application of the proposed method to analyze the 

simulated field measurements data is demonstrated. Sea wave and 

motion responses of a truss spar platform are depicted in Figs. 8-9. 

Time series of Fig. 8 reveal that the sea state can be classified as a 

571



 

rough sea where 0.45.2H S −= m. Sea wave elevation seems to be 

linear random waves because its amplitudes appear to be symmetrical 

around its mean value. The behavior of surge motion in terms of time 

series is displayed in the top panel of Fig. 9. The surge motion has both 

+ve and –ve amplitudes and oscillates at positive mean value.  
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Fig. 8 Simulated field measurement data of sea wave  

 

The response amplitudes appear to be unsymmetrical around its mean 

value and seem to be shifted upward. It implies that the surge motion 

appears to be nonlinear, which mean that surge motion in high sea state 

contains more nonlinear effects. On the other hand, heave and pitch 

motion have negative mean value. Heave and pitch responses fluctuate 

about the mean value oscillating from smaller to larger amplitudes and 

repeating the same trend onwards all through the time series. The 

fluctuations gradually increase from narrow to broad and after each 

peak. They appear to be almost symmetrical, meaning that non-linearity 

is not very sturdy on heave and pitch motion excursion.  
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Fig. 9 Simulated field measurement data of truss spar responses 

 
Compared to heave and pitch, surge has low-frequency motion in the 

given time series 

 

Similar with numerical examples, coefficients of TVARX model must 

determined before calculating the LTF. Here, the coefficients are 

reflected in the ability of TVARX model in predicting the true motion 

response. The comparison of motion response predicted by TVARX 

model with the true motion response is displayed in the top panel of 

Fig. 10. The model error between the true motion response and 

TVARX model is relatively small as shown in the bottom panel of Fig 

10. From the figure, it can be seen that the errors for TVARX models 

are relatively small, meaning that TVARX model can fit the motion 

responses accurately. Accurate fitting will produce the accurate zeros 

and poles of the system through the TVARX coefficients. It implies to 

the accurate TVTF. It is noted that prediction and error of TVARX 
models for heave and pitch motion are no presented here because they 

have similar trends. 
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Fig. 10 Surge motion estimation and the model error  

 

Further, after confirming that TVARX model can produce good fitting, 

LTF gain estimation can be carried out for surge, heave and pitch 

motion. DFT based LTF gain is performed as comparison. It should be 

noted that LTF gain obtained from TVARX model is LTVTF in gain-

frequency distribution. The results are depicted in Figs. 11(a), 10(b) 

and (c), respectively. It is clearly observed that TVARX model 

produces sharper and smoother LTF compared to DFT. It also can be 

seen that maximum gains is located in frequency 0.05 Hz for surge, 0.5 

Hz for heave and 0.3 Hz for pitch. 
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Fig. 11 LTF gains of surge, heave and pitch motion 
 

Representation of LTF in gain-time-frequency distribution enables us 

to observe the behaviour of LTF with respect to time. This is the 

benefit of using TVARX model. LTVTF of surge, heave and pitch 

motion to wave are displayed in Figs. 12(a), (b) and (c), respectively. 

As observed in Fig. 12(a), surge LTVTF provides a good description of 

characteristic of surge motion response to wave compared to Fig. 11(a).  

 

(a) 

 

(b) 

 

(c)  

Fig. 12 Surge, heave and pitch LTVTF gain 
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Non-stationarity is clearly observed over there. In LTVTF, it can be 
seen that the TF characteristics of surge motion are varying time-

frequency and varying time-gain distributions. TVARX model can 

extract such informations accurately and produce high resolution with 

model order of (4, 2). 

 

Gain of LTVTF heave motion reveals that heave motion is more 

stationary compared to surge or pitch motions as shown in Fig. 12(b). 

The LTVTF gain for the heave motion is consistent as the time indexes 

are increased. However, the LTVTF gain of the surge and pitch motion 

are more time dependent and more complicated than heave motion. 

 

Representation of TVTF gain in time-frequency distribution enable us 

to observe the behaviors of TFs with respect the time. Recorded signals 

of wave or motion responses of offshore structures are generally 

random in nature, contain nonstationarity and nonlinearity. It can be 

tackled by TVARX model , meaning that it is a promising method in 

generating time-frequency based TFs for the need of offshore 

engineering research. However, more investigations are needed to 

develop this method and make it more reliable and applicable by using 

more data sets and new measurement data. 

 

CONCLUSIONS 

 

1) Response transfer function using field measurements have been 

estimated in this paper. The estimation has been carried out by 

employing the TVARX model, solved with combination of 

Kalman smoother and EM algorithm. Performance of the 

TVAR as special form of TVARX model using LMS, RLS and 

KS with EM compared to Hilbert transformation and STFT has 

been carried out. It is superior in time-varying spectral analysis 

for systems which have frequency or amplitude modulation and 

low frequency signal. 

2) TVARX model produces accurate, smooth and less noise TF 

estimates over DFT method in gain-frequency distribution. 

3) The TF characteristics of surge and pitch motion are varying 

time-frequency and varying time-gain distribution compared to 

heave motion. The LTVTF gain of the surge and pitch motion 

are more time dependent and more complicated than heave 

motion. 

4)  It is expected that this work will initiate the use of TVTFs in 
the offshore engineering researches as it provides additional 

insights of time history of TFs that can not be given by the 

time-invariant TFs. 
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